Xenova HF Staff whitphx HF Staff commited on
Commit
f054713
·
verified ·
1 Parent(s): b005c30

Add/update the quantized ONNX model files and README.md for Transformers.js v3 (#1)

Browse files

- Add/update the quantized ONNX model files and README.md for Transformers.js v3 (00b651c9de08ab93b84bf89fd7f204b9ed7607ba)


Co-authored-by: Yuichiro Tachibana <[email protected]>

README.md CHANGED
@@ -8,18 +8,16 @@ tags:
8
 
9
  https://huggingface.co/AmelieSchreiber/esm2_t6_8M_UR50D_sequence_classifier_v1 with ONNX weights to be compatible with Transformers.js.
10
 
11
-
12
-
13
  ## Usage (Transformers.js)
14
 
15
- If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
16
  ```bash
17
- npm i @xenova/transformers
18
  ```
19
 
20
  **Example:** Protein sequence classification w/ `Xenova/esm2_t6_8M_UR50D_sequence_classifier_v1`.
21
  ```js
22
- import { pipeline } from '@xenova/transformers';
23
 
24
  // Create text classification pipeline
25
  const classifier = await pipeline('text-classification', 'Xenova/esm2_t6_8M_UR50D_sequence_classifier_v1');
@@ -88,5 +86,4 @@ for (let i = 0; i < predictions.length; ++i) {
88
  // Sequence: QPSASNCEKMSSYRPSLPSMSKGVPSSRSKSSPPYQ, Predicted class: 'Structural Proteins'
89
  ```
90
 
91
-
92
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
 
8
 
9
  https://huggingface.co/AmelieSchreiber/esm2_t6_8M_UR50D_sequence_classifier_v1 with ONNX weights to be compatible with Transformers.js.
10
 
 
 
11
  ## Usage (Transformers.js)
12
 
13
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
14
  ```bash
15
+ npm i @huggingface/transformers
16
  ```
17
 
18
  **Example:** Protein sequence classification w/ `Xenova/esm2_t6_8M_UR50D_sequence_classifier_v1`.
19
  ```js
20
+ import { pipeline } from '@huggingface/transformers';
21
 
22
  // Create text classification pipeline
23
  const classifier = await pipeline('text-classification', 'Xenova/esm2_t6_8M_UR50D_sequence_classifier_v1');
 
86
  // Sequence: QPSASNCEKMSSYRPSLPSMSKGVPSSRSKSSPPYQ, Predicted class: 'Structural Proteins'
87
  ```
88
 
 
89
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
onnx/model_bnb4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0f1db9d1d953b93d233a15434aec8144a164f49c028f9b40166ed7986b2e149
3
+ size 4941412
onnx/model_int8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:baffbd276fa453d6f291de12e0adc62455e5164faa31a938d8dd17656cfb0655
3
+ size 7866436
onnx/model_q4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1c6f5b4273c4d28db176334f9f51b8357d55d0c97958b434b197f44fafa9d42
3
+ size 5401924
onnx/model_q4f16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b9b892db3608496b9316dfce528668df1c7102d2039e4a522bf62547b2b635b
3
+ size 4664322
onnx/model_uint8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65d8aebe0e8c4f81576832fc27264437cce85f0b770456aed365680544ff6311
3
+ size 7866451