Update README.md
Browse files
README.md
CHANGED
@@ -8,4 +8,156 @@ base_model:
|
|
8 |
- Qwen/Qwen3-0.6B
|
9 |
pipeline_tag: text-to-speech
|
10 |
library_name: transformers
|
11 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
- Qwen/Qwen3-0.6B
|
9 |
pipeline_tag: text-to-speech
|
10 |
library_name: transformers
|
11 |
+
---
|
12 |
+
## Overview
|
13 |
+
VyvoTTS-v0-Qwen3-0.6B is a Text-to-Speech model based on Qwen3-0.6B, trained to produce natural-sounding English speech.
|
14 |
+
|
15 |
+
- **Type:** Text-to-Speech
|
16 |
+
- **Language:** English
|
17 |
+
- **License:** MIT
|
18 |
+
- **Params:** ~810M
|
19 |
+
|
20 |
+
> **Note:** This model has a high Word Error Rate (WER) as it was trained on a 10,000-hour dataset. To improve the model's accuracy, you should use it as a pretrained base.
|
21 |
+
> I can recommend the Emilia dataset for this purpose. After the pretraining process is complete, you should perform fine-tuning for single-speaker speech.
|
22 |
+
|
23 |
+
## Usage
|
24 |
+
Below is an example of using the model with `unsloth` and `SNAC` for speech generation:
|
25 |
+
|
26 |
+
```python
|
27 |
+
from unsloth import FastLanguageModel
|
28 |
+
import torch
|
29 |
+
from snac import SNAC
|
30 |
+
|
31 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
32 |
+
model_name = "unsloth/orpheus-3b-0.1-ft",
|
33 |
+
max_seq_length= 2048,
|
34 |
+
dtype = None,
|
35 |
+
load_in_4bit = False,
|
36 |
+
)
|
37 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
38 |
+
tokeniser_length = 151669
|
39 |
+
start_of_text = 151643
|
40 |
+
end_of_text = 151645
|
41 |
+
|
42 |
+
start_of_speech = tokeniser_length + 1
|
43 |
+
end_of_speech = tokeniser_length + 2
|
44 |
+
start_of_human = tokeniser_length + 3
|
45 |
+
end_of_human = tokeniser_length + 4
|
46 |
+
pad_token = tokeniser_length + 7
|
47 |
+
|
48 |
+
audio_tokens_start = tokeniser_length + 10
|
49 |
+
prompts = ["Hey there my name is Elise, and I'm a speech generation model that can sound like a person."]
|
50 |
+
chosen_voice = None
|
51 |
+
|
52 |
+
FastLanguageModel.for_inference(model)
|
53 |
+
snac_model.to("cpu")
|
54 |
+
prompts_ = [(f"{chosen_voice}: " + p) if chosen_voice else p for p in prompts]
|
55 |
+
|
56 |
+
all_input_ids = []
|
57 |
+
for prompt in prompts_:
|
58 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
59 |
+
all_input_ids.append(input_ids)
|
60 |
+
|
61 |
+
start_token = torch.tensor([[start_of_human]], dtype=torch.int64)
|
62 |
+
end_tokens = torch.tensor([[end_of_text, end_of_human]], dtype=torch.int64)
|
63 |
+
|
64 |
+
all_modified_input_ids = []
|
65 |
+
for input_ids in all_input_ids:
|
66 |
+
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
|
67 |
+
all_modified_input_ids.append(modified_input_ids)
|
68 |
+
|
69 |
+
all_padded_tensors, all_attention_masks = [], []
|
70 |
+
max_length = max([m.shape[1] for m in all_modified_input_ids])
|
71 |
+
for m in all_modified_input_ids:
|
72 |
+
padding = max_length - m.shape[1]
|
73 |
+
padded_tensor = torch.cat([torch.full((1, padding), pad_token, dtype=torch.int64), m], dim=1)
|
74 |
+
attention_mask = torch.cat([torch.zeros((1, padding), dtype=torch.int64), torch.ones((1, m.shape[1]), dtype=torch.int64)], dim=1)
|
75 |
+
all_padded_tensors.append(padded_tensor)
|
76 |
+
all_attention_masks.append(attention_mask)
|
77 |
+
|
78 |
+
input_ids = torch.cat(all_padded_tensors, dim=0).to("cuda")
|
79 |
+
attention_mask = torch.cat(all_attention_masks, dim=0).to("cuda")
|
80 |
+
|
81 |
+
generated_ids = model.generate(
|
82 |
+
input_ids=input_ids,
|
83 |
+
attention_mask=attention_mask,
|
84 |
+
max_new_tokens=1200,
|
85 |
+
do_sample=True,
|
86 |
+
temperature=0.6,
|
87 |
+
top_p=0.95,
|
88 |
+
repetition_penalty=1.1,
|
89 |
+
num_return_sequences=1,
|
90 |
+
eos_token_id=end_of_speech,
|
91 |
+
use_cache=True
|
92 |
+
)
|
93 |
+
|
94 |
+
token_to_find = start_of_speech
|
95 |
+
token_to_remove = end_of_speech
|
96 |
+
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
97 |
+
|
98 |
+
if len(token_indices[1]) > 0:
|
99 |
+
last_occurrence_idx = token_indices[1][-1].item()
|
100 |
+
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
|
101 |
+
else:
|
102 |
+
cropped_tensor = generated_ids
|
103 |
+
|
104 |
+
processed_rows = []
|
105 |
+
for row in cropped_tensor:
|
106 |
+
masked_row = row[row != token_to_remove]
|
107 |
+
processed_rows.append(masked_row)
|
108 |
+
|
109 |
+
code_lists = []
|
110 |
+
for row in processed_rows:
|
111 |
+
row_length = row.size(0)
|
112 |
+
new_length = (row_length // 7) * 7
|
113 |
+
trimmed_row = row[:new_length]
|
114 |
+
trimmed_row = [t - audio_tokens_start for t in trimmed_row]
|
115 |
+
code_lists.append(trimmed_row)
|
116 |
+
|
117 |
+
def redistribute_codes(code_list):
|
118 |
+
layer_1, layer_2, layer_3 = [], [], []
|
119 |
+
for i in range((len(code_list)+1)//7):
|
120 |
+
layer_1.append(code_list[7*i])
|
121 |
+
layer_2.append(code_list[7*i+1]-4096)
|
122 |
+
layer_3.append(code_list[7*i+2]-(2*4096))
|
123 |
+
layer_3.append(code_list[7*i+3]-(3*4096))
|
124 |
+
layer_2.append(code_list[7*i+4]-(4*4096))
|
125 |
+
layer_3.append(code_list[7*i+5]-(5*4096))
|
126 |
+
layer_3.append(code_list[7*i+6]-(6*4096))
|
127 |
+
codes = [
|
128 |
+
torch.tensor(layer_1).unsqueeze(0),
|
129 |
+
torch.tensor(layer_2).unsqueeze(0),
|
130 |
+
torch.tensor(layer_3).unsqueeze(0)
|
131 |
+
]
|
132 |
+
audio_hat = snac_model.decode(codes)
|
133 |
+
return audio_hat
|
134 |
+
|
135 |
+
my_samples = []
|
136 |
+
for code_list in code_lists:
|
137 |
+
samples = redistribute_codes(code_list)
|
138 |
+
my_samples.append(samples)
|
139 |
+
|
140 |
+
from IPython.display import display, Audio
|
141 |
+
if len(prompts) != len(my_samples):
|
142 |
+
raise Exception("Number of prompts and samples do not match")
|
143 |
+
else:
|
144 |
+
for i in range(len(my_samples)):
|
145 |
+
print(prompts[i])
|
146 |
+
samples = my_samples[i]
|
147 |
+
display(Audio(samples.detach().squeeze().to("cpu").numpy(), rate=24000))
|
148 |
+
|
149 |
+
del my_samples, samples
|
150 |
+
```
|
151 |
+
|
152 |
+
## Citation
|
153 |
+
|
154 |
+
If you use this model, please cite:
|
155 |
+
|
156 |
+
```bibtex
|
157 |
+
@misc{VyvoTTS-v0-Qwen3-0.6B,
|
158 |
+
title={VyvoTTS-v0-Qwen3-0.6B},
|
159 |
+
author={Vyvo},
|
160 |
+
year={2025},
|
161 |
+
howpublished={\url{https://huggingface.co/Vyvo/VyvoTTS-v0-Qwen3-0.6B}}
|
162 |
+
}
|
163 |
+
```
|