Updated compare_result function to allow passing the cursor, also re-ran test_pretrained and test_rag with updated loss function
Browse files
src/evaluation/__pycache__/compare_result.cpython-312.pyc
CHANGED
|
Binary files a/src/evaluation/__pycache__/compare_result.cpython-312.pyc and b/src/evaluation/__pycache__/compare_result.cpython-312.pyc differ
|
|
|
src/evaluation/compare_result.py
CHANGED
|
@@ -1,11 +1,6 @@
|
|
| 1 |
import math
|
| 2 |
-
import sqlite3 as sql
|
| 3 |
-
|
| 4 |
-
def compare_result(sample_query, sample_result, query_output):
|
| 5 |
-
# Create connection to sqlite3 database
|
| 6 |
-
connection = sql.connect('./nba-data/nba.sqlite')
|
| 7 |
-
cursor = connection.cursor()
|
| 8 |
|
|
|
|
| 9 |
# Clean model output to only have the query output
|
| 10 |
if query_output[0:8] == "SQLite:\n":
|
| 11 |
query = query_output[8:]
|
|
|
|
| 1 |
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
def compare_result(cursor, sample_query, sample_result, query_output):
|
| 4 |
# Clean model output to only have the query output
|
| 5 |
if query_output[0:8] == "SQLite:\n":
|
| 6 |
query = query_output[8:]
|
src/prompts/__pycache__/prompt.cpython-312.pyc
ADDED
|
Binary file (9.22 kB). View file
|
|
|
test_pretrained.ipynb
CHANGED
|
@@ -9,7 +9,7 @@
|
|
| 9 |
},
|
| 10 |
{
|
| 11 |
"cell_type": "code",
|
| 12 |
-
"execution_count":
|
| 13 |
"metadata": {},
|
| 14 |
"outputs": [],
|
| 15 |
"source": [
|
|
@@ -26,7 +26,7 @@
|
|
| 26 |
},
|
| 27 |
{
|
| 28 |
"cell_type": "code",
|
| 29 |
-
"execution_count":
|
| 30 |
"metadata": {},
|
| 31 |
"outputs": [],
|
| 32 |
"source": [
|
|
@@ -35,7 +35,7 @@
|
|
| 35 |
},
|
| 36 |
{
|
| 37 |
"cell_type": "code",
|
| 38 |
-
"execution_count":
|
| 39 |
"metadata": {},
|
| 40 |
"outputs": [],
|
| 41 |
"source": [
|
|
@@ -56,7 +56,7 @@
|
|
| 56 |
},
|
| 57 |
{
|
| 58 |
"cell_type": "code",
|
| 59 |
-
"execution_count":
|
| 60 |
"metadata": {},
|
| 61 |
"outputs": [],
|
| 62 |
"source": [
|
|
@@ -73,7 +73,7 @@
|
|
| 73 |
},
|
| 74 |
{
|
| 75 |
"cell_type": "code",
|
| 76 |
-
"execution_count":
|
| 77 |
"metadata": {},
|
| 78 |
"outputs": [
|
| 79 |
{
|
|
@@ -83,9 +83,9 @@
|
|
| 83 |
"Total dataset examples: 1044\n",
|
| 84 |
"\n",
|
| 85 |
"\n",
|
| 86 |
-
"How many
|
| 87 |
-
"SELECT
|
| 88 |
-
"
|
| 89 |
]
|
| 90 |
}
|
| 91 |
],
|
|
@@ -111,16 +111,20 @@
|
|
| 111 |
},
|
| 112 |
{
|
| 113 |
"cell_type": "code",
|
| 114 |
-
"execution_count":
|
| 115 |
"metadata": {},
|
| 116 |
"outputs": [],
|
| 117 |
"source": [
|
| 118 |
"# Set device to cuda if available, otherwise CPU\n",
|
| 119 |
-
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
| 120 |
"\n",
|
| 121 |
"# Load model and tokenizer\n",
|
| 122 |
-
"
|
| 123 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
"model.generation_config.pad_token_id = tokenizer.pad_token_id"
|
| 125 |
]
|
| 126 |
},
|
|
@@ -133,7 +137,7 @@
|
|
| 133 |
},
|
| 134 |
{
|
| 135 |
"cell_type": "code",
|
| 136 |
-
"execution_count":
|
| 137 |
"metadata": {},
|
| 138 |
"outputs": [
|
| 139 |
{
|
|
@@ -141,7 +145,7 @@
|
|
| 141 |
"output_type": "stream",
|
| 142 |
"text": [
|
| 143 |
"SQLite:\n",
|
| 144 |
-
"SELECT
|
| 145 |
"\n"
|
| 146 |
]
|
| 147 |
}
|
|
@@ -166,14 +170,15 @@
|
|
| 166 |
},
|
| 167 |
{
|
| 168 |
"cell_type": "code",
|
| 169 |
-
"execution_count":
|
| 170 |
"metadata": {},
|
| 171 |
"outputs": [
|
| 172 |
{
|
| 173 |
"name": "stdout",
|
| 174 |
"output_type": "stream",
|
| 175 |
"text": [
|
| 176 |
-
"cleaned\n"
|
|
|
|
| 177 |
]
|
| 178 |
}
|
| 179 |
],
|
|
@@ -209,18 +214,22 @@
|
|
| 209 |
},
|
| 210 |
{
|
| 211 |
"cell_type": "code",
|
| 212 |
-
"execution_count":
|
| 213 |
"metadata": {},
|
| 214 |
"outputs": [
|
| 215 |
{
|
| 216 |
-
"
|
| 217 |
-
"
|
| 218 |
-
"
|
| 219 |
-
|
| 220 |
-
"
|
| 221 |
-
"
|
| 222 |
-
"
|
| 223 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
]
|
| 225 |
}
|
| 226 |
],
|
|
@@ -256,7 +265,7 @@
|
|
| 256 |
},
|
| 257 |
{
|
| 258 |
"cell_type": "code",
|
| 259 |
-
"execution_count":
|
| 260 |
"metadata": {},
|
| 261 |
"outputs": [],
|
| 262 |
"source": [
|
|
@@ -304,7 +313,7 @@
|
|
| 304 |
},
|
| 305 |
{
|
| 306 |
"cell_type": "code",
|
| 307 |
-
"execution_count":
|
| 308 |
"metadata": {},
|
| 309 |
"outputs": [
|
| 310 |
{
|
|
@@ -317,9 +326,9 @@
|
|
| 317 |
"Completed 200\n",
|
| 318 |
"\n",
|
| 319 |
"Less than 90 results:\n",
|
| 320 |
-
"Percent valid: 0.
|
| 321 |
-
"Percent SQLite matched: 0.
|
| 322 |
-
"Percent result matched: 0.
|
| 323 |
"Dataset length: 245\n"
|
| 324 |
]
|
| 325 |
}
|
|
@@ -341,36 +350,7 @@
|
|
| 341 |
"cell_type": "code",
|
| 342 |
"execution_count": null,
|
| 343 |
"metadata": {},
|
| 344 |
-
"outputs": [
|
| 345 |
-
{
|
| 346 |
-
"name": "stdout",
|
| 347 |
-
"output_type": "stream",
|
| 348 |
-
"text": [
|
| 349 |
-
"Completed 50\n",
|
| 350 |
-
"Completed 100\n",
|
| 351 |
-
"Completed 150\n",
|
| 352 |
-
"Completed 200\n",
|
| 353 |
-
"Completed 250\n",
|
| 354 |
-
"Completed 300\n",
|
| 355 |
-
"Completed 350\n",
|
| 356 |
-
"Completed 400\n",
|
| 357 |
-
"Completed 450\n",
|
| 358 |
-
"Completed 500\n",
|
| 359 |
-
"Completed 550\n",
|
| 360 |
-
"Completed 600\n",
|
| 361 |
-
"Completed 650\n",
|
| 362 |
-
"Completed 700\n",
|
| 363 |
-
"Completed 750\n",
|
| 364 |
-
"Completed 800\n",
|
| 365 |
-
"\n",
|
| 366 |
-
"Queries from game results:\n",
|
| 367 |
-
"Percent valid: 0.7613365155131265\n",
|
| 368 |
-
"Percent SQLite matched: 0.13842482100238662\n",
|
| 369 |
-
"Percent result matched: 0.383054892601432\n",
|
| 370 |
-
"Dataset length: 838\n"
|
| 371 |
-
]
|
| 372 |
-
}
|
| 373 |
-
],
|
| 374 |
"source": [
|
| 375 |
"game_queries = pd.read_csv(get_path(\"train-data/queries_from_game.tsv\"), sep='\\t')\n",
|
| 376 |
"run_evaluation(game_queries, \"Queries from game\")\n",
|
|
@@ -388,23 +368,7 @@
|
|
| 388 |
"cell_type": "code",
|
| 389 |
"execution_count": null,
|
| 390 |
"metadata": {},
|
| 391 |
-
"outputs": [
|
| 392 |
-
{
|
| 393 |
-
"name": "stdout",
|
| 394 |
-
"output_type": "stream",
|
| 395 |
-
"text": [
|
| 396 |
-
"Completed 50\n",
|
| 397 |
-
"Completed 100\n",
|
| 398 |
-
"Completed 150\n",
|
| 399 |
-
"\n",
|
| 400 |
-
"Queries from other stats results:\n",
|
| 401 |
-
"Percent valid: 0.21428571428571427\n",
|
| 402 |
-
"Percent SQLite matched: 0.01948051948051948\n",
|
| 403 |
-
"Percent result matched: 0.07142857142857142\n",
|
| 404 |
-
"Dataset length: 154\n"
|
| 405 |
-
]
|
| 406 |
-
}
|
| 407 |
-
],
|
| 408 |
"source": [
|
| 409 |
"other_stats_queries = pd.read_csv(get_path(\"train-data/queries_from_other_stats.tsv\"), sep='\\t')\n",
|
| 410 |
"run_evaluation(other_stats_queries, \"Queries from other stats\")\n",
|
|
@@ -422,21 +386,7 @@
|
|
| 422 |
"cell_type": "code",
|
| 423 |
"execution_count": null,
|
| 424 |
"metadata": {},
|
| 425 |
-
"outputs": [
|
| 426 |
-
{
|
| 427 |
-
"name": "stdout",
|
| 428 |
-
"output_type": "stream",
|
| 429 |
-
"text": [
|
| 430 |
-
"Completed 50\n",
|
| 431 |
-
"\n",
|
| 432 |
-
"Queries from team results:\n",
|
| 433 |
-
"Percent valid: 0.8653846153846154\n",
|
| 434 |
-
"Percent SQLite matched: 0.5961538461538461\n",
|
| 435 |
-
"Percent result matched: 0.7884615384615384\n",
|
| 436 |
-
"Dataset length: 52\n"
|
| 437 |
-
]
|
| 438 |
-
}
|
| 439 |
-
],
|
| 440 |
"source": [
|
| 441 |
"team_queries = pd.read_csv(get_path(\"train-data/queries_from_team.tsv\"), sep='\\t')\n",
|
| 442 |
"run_evaluation(team_queries, \"Queries from team\")\n",
|
|
@@ -454,23 +404,7 @@
|
|
| 454 |
"cell_type": "code",
|
| 455 |
"execution_count": null,
|
| 456 |
"metadata": {},
|
| 457 |
-
"outputs": [
|
| 458 |
-
{
|
| 459 |
-
"name": "stdout",
|
| 460 |
-
"output_type": "stream",
|
| 461 |
-
"text": [
|
| 462 |
-
"Completed 50\n",
|
| 463 |
-
"Completed 100\n",
|
| 464 |
-
"Completed 150\n",
|
| 465 |
-
"\n",
|
| 466 |
-
"Queries with join results:\n",
|
| 467 |
-
"Percent valid: 0.1945945945945946\n",
|
| 468 |
-
"Percent SQLite matched: 0.0\n",
|
| 469 |
-
"Percent result matched: 0.04864864864864865\n",
|
| 470 |
-
"Dataset length: 185\n"
|
| 471 |
-
]
|
| 472 |
-
}
|
| 473 |
-
],
|
| 474 |
"source": [
|
| 475 |
"join_queries = pd.read_csv(get_path(\"train-data/with_join.tsv\"), sep='\\t')\n",
|
| 476 |
"run_evaluation(join_queries, \"Queries with join\")\n",
|
|
@@ -488,37 +422,7 @@
|
|
| 488 |
"cell_type": "code",
|
| 489 |
"execution_count": null,
|
| 490 |
"metadata": {},
|
| 491 |
-
"outputs": [
|
| 492 |
-
{
|
| 493 |
-
"name": "stdout",
|
| 494 |
-
"output_type": "stream",
|
| 495 |
-
"text": [
|
| 496 |
-
"Completed 50\n",
|
| 497 |
-
"Completed 100\n",
|
| 498 |
-
"Completed 150\n",
|
| 499 |
-
"Completed 200\n",
|
| 500 |
-
"Completed 250\n",
|
| 501 |
-
"Completed 300\n",
|
| 502 |
-
"Completed 350\n",
|
| 503 |
-
"Completed 400\n",
|
| 504 |
-
"Completed 450\n",
|
| 505 |
-
"Completed 500\n",
|
| 506 |
-
"Completed 550\n",
|
| 507 |
-
"Completed 600\n",
|
| 508 |
-
"Completed 650\n",
|
| 509 |
-
"Completed 700\n",
|
| 510 |
-
"Completed 750\n",
|
| 511 |
-
"Completed 800\n",
|
| 512 |
-
"Completed 850\n",
|
| 513 |
-
"\n",
|
| 514 |
-
"Queries without join results:\n",
|
| 515 |
-
"Percent valid: 0.7916181606519208\n",
|
| 516 |
-
"Percent SQLite matched: 0.17462165308498254\n",
|
| 517 |
-
"Percent result matched: 0.42374854481955765\n",
|
| 518 |
-
"Dataset length: 859\n"
|
| 519 |
-
]
|
| 520 |
-
}
|
| 521 |
-
],
|
| 522 |
"source": [
|
| 523 |
"no_join_queries = pd.read_csv(get_path(\"train-data/without_join.tsv\"), sep='\\t')\n",
|
| 524 |
"run_evaluation(no_join_queries, \"Queries without join\")\n",
|
|
@@ -534,7 +438,7 @@
|
|
| 534 |
},
|
| 535 |
{
|
| 536 |
"cell_type": "code",
|
| 537 |
-
"execution_count":
|
| 538 |
"metadata": {},
|
| 539 |
"outputs": [
|
| 540 |
{
|
|
@@ -563,9 +467,9 @@
|
|
| 563 |
"Completed 1000\n",
|
| 564 |
"\n",
|
| 565 |
"All training data results:\n",
|
| 566 |
-
"Percent valid: 0.
|
| 567 |
"Percent SQLite matched: 0.14367816091954022\n",
|
| 568 |
-
"Percent result matched: 0.
|
| 569 |
"Dataset length: 1044\n"
|
| 570 |
]
|
| 571 |
}
|
|
@@ -579,7 +483,7 @@
|
|
| 579 |
],
|
| 580 |
"metadata": {
|
| 581 |
"kernelspec": {
|
| 582 |
-
"display_name": "
|
| 583 |
"language": "python",
|
| 584 |
"name": "python3"
|
| 585 |
},
|
|
@@ -593,7 +497,7 @@
|
|
| 593 |
"name": "python",
|
| 594 |
"nbconvert_exporter": "python",
|
| 595 |
"pygments_lexer": "ipython3",
|
| 596 |
-
"version": "3.
|
| 597 |
}
|
| 598 |
},
|
| 599 |
"nbformat": 4,
|
|
|
|
| 9 |
},
|
| 10 |
{
|
| 11 |
"cell_type": "code",
|
| 12 |
+
"execution_count": 1,
|
| 13 |
"metadata": {},
|
| 14 |
"outputs": [],
|
| 15 |
"source": [
|
|
|
|
| 26 |
},
|
| 27 |
{
|
| 28 |
"cell_type": "code",
|
| 29 |
+
"execution_count": 2,
|
| 30 |
"metadata": {},
|
| 31 |
"outputs": [],
|
| 32 |
"source": [
|
|
|
|
| 35 |
},
|
| 36 |
{
|
| 37 |
"cell_type": "code",
|
| 38 |
+
"execution_count": 3,
|
| 39 |
"metadata": {},
|
| 40 |
"outputs": [],
|
| 41 |
"source": [
|
|
|
|
| 56 |
},
|
| 57 |
{
|
| 58 |
"cell_type": "code",
|
| 59 |
+
"execution_count": 4,
|
| 60 |
"metadata": {},
|
| 61 |
"outputs": [],
|
| 62 |
"source": [
|
|
|
|
| 73 |
},
|
| 74 |
{
|
| 75 |
"cell_type": "code",
|
| 76 |
+
"execution_count": 5,
|
| 77 |
"metadata": {},
|
| 78 |
"outputs": [
|
| 79 |
{
|
|
|
|
| 83 |
"Total dataset examples: 1044\n",
|
| 84 |
"\n",
|
| 85 |
"\n",
|
| 86 |
+
"How many times were games tied when the Indiana Pacers played at home?\n",
|
| 87 |
+
"SELECT SUM(times_tied) as total_times_tied FROM other_stats WHERE team_abbreviation_home = 'IND';\n",
|
| 88 |
+
"4805.0\n"
|
| 89 |
]
|
| 90 |
}
|
| 91 |
],
|
|
|
|
| 111 |
},
|
| 112 |
{
|
| 113 |
"cell_type": "code",
|
| 114 |
+
"execution_count": 6,
|
| 115 |
"metadata": {},
|
| 116 |
"outputs": [],
|
| 117 |
"source": [
|
| 118 |
"# Set device to cuda if available, otherwise CPU\n",
|
| 119 |
+
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
|
| 120 |
"\n",
|
| 121 |
"# Load model and tokenizer\n",
|
| 122 |
+
"if is_google_colab:\n",
|
| 123 |
+
" tokenizer = AutoTokenizer.from_pretrained(get_path(\"deepseek-coder-1.3b-instruct\"))\n",
|
| 124 |
+
" model = AutoModelForCausalLM.from_pretrained(get_path(\"deepseek-coder-1.3b-instruct\"), torch_dtype=torch.bfloat16, device_map=device) \n",
|
| 125 |
+
"else:\n",
|
| 126 |
+
" tokenizer = AutoTokenizer.from_pretrained(\"./deepseek-coder-1.3b-instruct\")\n",
|
| 127 |
+
" model = AutoModelForCausalLM.from_pretrained(\"./deepseek-coder-1.3b-instruct\", torch_dtype=torch.bfloat16, device_map=device) \n",
|
| 128 |
"model.generation_config.pad_token_id = tokenizer.pad_token_id"
|
| 129 |
]
|
| 130 |
},
|
|
|
|
| 137 |
},
|
| 138 |
{
|
| 139 |
"cell_type": "code",
|
| 140 |
+
"execution_count": 7,
|
| 141 |
"metadata": {},
|
| 142 |
"outputs": [
|
| 143 |
{
|
|
|
|
| 145 |
"output_type": "stream",
|
| 146 |
"text": [
|
| 147 |
"SQLite:\n",
|
| 148 |
+
"SELECT COUNT(*) FROM game WHERE team_name_home = 'Indiana Pacers' AND wl_home = 'T';\n",
|
| 149 |
"\n"
|
| 150 |
]
|
| 151 |
}
|
|
|
|
| 170 |
},
|
| 171 |
{
|
| 172 |
"cell_type": "code",
|
| 173 |
+
"execution_count": 8,
|
| 174 |
"metadata": {},
|
| 175 |
"outputs": [
|
| 176 |
{
|
| 177 |
"name": "stdout",
|
| 178 |
"output_type": "stream",
|
| 179 |
"text": [
|
| 180 |
+
"cleaned\n",
|
| 181 |
+
"(0,)\n"
|
| 182 |
]
|
| 183 |
}
|
| 184 |
],
|
|
|
|
| 214 |
},
|
| 215 |
{
|
| 216 |
"cell_type": "code",
|
| 217 |
+
"execution_count": 9,
|
| 218 |
"metadata": {},
|
| 219 |
"outputs": [
|
| 220 |
{
|
| 221 |
+
"name": "stdout",
|
| 222 |
+
"output_type": "stream",
|
| 223 |
+
"text": [
|
| 224 |
+
"What is the year the Milwaukee team was founded?\n",
|
| 225 |
+
"SELECT year_founded FROM team WHERE city = 'Milwaukee';\n",
|
| 226 |
+
"1968.0\n",
|
| 227 |
+
"SQLite:\n",
|
| 228 |
+
"SELECT year_founded FROM team WHERE full_name = 'Milwaukee Bucks';\n",
|
| 229 |
+
"\n",
|
| 230 |
+
"Statement valid? True\n",
|
| 231 |
+
"SQLite matched? False\n",
|
| 232 |
+
"Result matched? True\n"
|
| 233 |
]
|
| 234 |
}
|
| 235 |
],
|
|
|
|
| 265 |
},
|
| 266 |
{
|
| 267 |
"cell_type": "code",
|
| 268 |
+
"execution_count": 10,
|
| 269 |
"metadata": {},
|
| 270 |
"outputs": [],
|
| 271 |
"source": [
|
|
|
|
| 313 |
},
|
| 314 |
{
|
| 315 |
"cell_type": "code",
|
| 316 |
+
"execution_count": 11,
|
| 317 |
"metadata": {},
|
| 318 |
"outputs": [
|
| 319 |
{
|
|
|
|
| 326 |
"Completed 200\n",
|
| 327 |
"\n",
|
| 328 |
"Less than 90 results:\n",
|
| 329 |
+
"Percent valid: 0.8734693877551021\n",
|
| 330 |
+
"Percent SQLite matched: 0.4448979591836735\n",
|
| 331 |
+
"Percent result matched: 0.6979591836734694\n",
|
| 332 |
"Dataset length: 245\n"
|
| 333 |
]
|
| 334 |
}
|
|
|
|
| 350 |
"cell_type": "code",
|
| 351 |
"execution_count": null,
|
| 352 |
"metadata": {},
|
| 353 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
"source": [
|
| 355 |
"game_queries = pd.read_csv(get_path(\"train-data/queries_from_game.tsv\"), sep='\\t')\n",
|
| 356 |
"run_evaluation(game_queries, \"Queries from game\")\n",
|
|
|
|
| 368 |
"cell_type": "code",
|
| 369 |
"execution_count": null,
|
| 370 |
"metadata": {},
|
| 371 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
"source": [
|
| 373 |
"other_stats_queries = pd.read_csv(get_path(\"train-data/queries_from_other_stats.tsv\"), sep='\\t')\n",
|
| 374 |
"run_evaluation(other_stats_queries, \"Queries from other stats\")\n",
|
|
|
|
| 386 |
"cell_type": "code",
|
| 387 |
"execution_count": null,
|
| 388 |
"metadata": {},
|
| 389 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
"source": [
|
| 391 |
"team_queries = pd.read_csv(get_path(\"train-data/queries_from_team.tsv\"), sep='\\t')\n",
|
| 392 |
"run_evaluation(team_queries, \"Queries from team\")\n",
|
|
|
|
| 404 |
"cell_type": "code",
|
| 405 |
"execution_count": null,
|
| 406 |
"metadata": {},
|
| 407 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
"source": [
|
| 409 |
"join_queries = pd.read_csv(get_path(\"train-data/with_join.tsv\"), sep='\\t')\n",
|
| 410 |
"run_evaluation(join_queries, \"Queries with join\")\n",
|
|
|
|
| 422 |
"cell_type": "code",
|
| 423 |
"execution_count": null,
|
| 424 |
"metadata": {},
|
| 425 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 426 |
"source": [
|
| 427 |
"no_join_queries = pd.read_csv(get_path(\"train-data/without_join.tsv\"), sep='\\t')\n",
|
| 428 |
"run_evaluation(no_join_queries, \"Queries without join\")\n",
|
|
|
|
| 438 |
},
|
| 439 |
{
|
| 440 |
"cell_type": "code",
|
| 441 |
+
"execution_count": 12,
|
| 442 |
"metadata": {},
|
| 443 |
"outputs": [
|
| 444 |
{
|
|
|
|
| 467 |
"Completed 1000\n",
|
| 468 |
"\n",
|
| 469 |
"All training data results:\n",
|
| 470 |
+
"Percent valid: 0.7097701149425287\n",
|
| 471 |
"Percent SQLite matched: 0.14367816091954022\n",
|
| 472 |
+
"Percent result matched: 0.3668582375478927\n",
|
| 473 |
"Dataset length: 1044\n"
|
| 474 |
]
|
| 475 |
}
|
|
|
|
| 483 |
],
|
| 484 |
"metadata": {
|
| 485 |
"kernelspec": {
|
| 486 |
+
"display_name": "Python 3",
|
| 487 |
"language": "python",
|
| 488 |
"name": "python3"
|
| 489 |
},
|
|
|
|
| 497 |
"name": "python",
|
| 498 |
"nbconvert_exporter": "python",
|
| 499 |
"pygments_lexer": "ipython3",
|
| 500 |
+
"version": "3.12.6"
|
| 501 |
}
|
| 502 |
},
|
| 503 |
"nbformat": 4,
|
test_rag.ipynb
CHANGED
|
@@ -375,7 +375,7 @@
|
|
| 375 |
" actual_result = \"Error executing query: \" + str(e)\n",
|
| 376 |
" \n",
|
| 377 |
" # Compare the ground truth query and expected result to the generated query and actual result.\n",
|
| 378 |
-
" valid, sql_matched, result_matched = compare_result(row[\"sql_query\"], row[\"result\"], generated_query)\n",
|
| 379 |
" print(\"=============================================\")\n",
|
| 380 |
" print(f\"Overall Valid: {valid}\")\n",
|
| 381 |
" print(f\"SQL Query Matched: {sql_matched}\")\n",
|
|
|
|
| 375 |
" actual_result = \"Error executing query: \" + str(e)\n",
|
| 376 |
" \n",
|
| 377 |
" # Compare the ground truth query and expected result to the generated query and actual result.\n",
|
| 378 |
+
" valid, sql_matched, result_matched = compare_result(cursor, row[\"sql_query\"], row[\"result\"], generated_query)\n",
|
| 379 |
" print(\"=============================================\")\n",
|
| 380 |
" print(f\"Overall Valid: {valid}\")\n",
|
| 381 |
" print(f\"SQL Query Matched: {sql_matched}\")\n",
|