Create test_rag.py
Browse files- test_rag.py +364 -0
test_rag.py
ADDED
|
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import warnings
|
| 3 |
+
import torch
|
| 4 |
+
import time
|
| 5 |
+
import math
|
| 6 |
+
import sqlite3 as sql
|
| 7 |
+
|
| 8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 9 |
+
from rag_metadata import SQLMetadataRetriever
|
| 10 |
+
|
| 11 |
+
warnings.filterwarnings("ignore")
|
| 12 |
+
|
| 13 |
+
# Establish a database connection once (adjust the DB path as needed)
|
| 14 |
+
connection = sql.connect('./nba-data/nba.sqlite')
|
| 15 |
+
cursor = connection.cursor()
|
| 16 |
+
|
| 17 |
+
# ------------------------------
|
| 18 |
+
# Load dataset and print summary
|
| 19 |
+
# ------------------------------
|
| 20 |
+
df = pd.read_csv("./train-data/sql_train.tsv", sep='\t')
|
| 21 |
+
print("Total dataset examples: " + str(len(df)))
|
| 22 |
+
print("\n")
|
| 23 |
+
|
| 24 |
+
# ------------------------------
|
| 25 |
+
# Load tokenizer and model
|
| 26 |
+
# ------------------------------
|
| 27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained("./deepseek-coder-1.3b-instruct")
|
| 29 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 30 |
+
"./deepseek-coder-1.3b-instruct",
|
| 31 |
+
torch_dtype=torch.bfloat16,
|
| 32 |
+
device_map=device
|
| 33 |
+
)
|
| 34 |
+
model.generation_config.pad_token_id = tokenizer.pad_token_id
|
| 35 |
+
|
| 36 |
+
# ------------------------------
|
| 37 |
+
# Initialize RAG retriever and load schema metadata
|
| 38 |
+
# ------------------------------
|
| 39 |
+
retriever = SQLMetadataRetriever()
|
| 40 |
+
|
| 41 |
+
metadata_docs = [
|
| 42 |
+
'''team Table
|
| 43 |
+
Stores information about NBA teams.
|
| 44 |
+
CREATE TABLE IF NOT EXISTS "team" (
|
| 45 |
+
"id" TEXT PRIMARY KEY, -- Unique identifier for the team
|
| 46 |
+
"full_name" TEXT, -- Full official name of the team (e.g., "Los Angeles Lakers")
|
| 47 |
+
"abbreviation" TEXT, -- Shortened team name (e.g., "LAL")
|
| 48 |
+
"nickname" TEXT, -- Commonly used nickname for the team (e.g., "Lakers")
|
| 49 |
+
"city" TEXT, -- City where the team is based
|
| 50 |
+
"state" TEXT, -- State where the team is located
|
| 51 |
+
"year_founded" REAL -- Year the team was established
|
| 52 |
+
);''',
|
| 53 |
+
'''game Table
|
| 54 |
+
Contains detailed statistics for each NBA game, including home and away team performance.
|
| 55 |
+
CREATE TABLE IF NOT EXISTS "game" (
|
| 56 |
+
"season_id" TEXT, -- Season identifier, formatted as "2YYYY" (e.g., "21970" for the 1970 season)
|
| 57 |
+
"team_id_home" TEXT, -- ID of the home team (matches "id" in team table)
|
| 58 |
+
"team_abbreviation_home" TEXT, -- Abbreviation of the home team
|
| 59 |
+
"team_name_home" TEXT, -- Full name of the home team
|
| 60 |
+
"game_id" TEXT PRIMARY KEY, -- Unique identifier for the game
|
| 61 |
+
"game_date" TIMESTAMP, -- Date the game was played (YYYY-MM-DD format)
|
| 62 |
+
"matchup_home" TEXT, -- Matchup details including opponent (e.g., "LAL vs. BOS")
|
| 63 |
+
"wl_home" TEXT, -- "W" if the home team won, "L" if they lost
|
| 64 |
+
"min" INTEGER, -- Total minutes played in the game
|
| 65 |
+
"fgm_home" REAL, -- Field goals made by the home team
|
| 66 |
+
"fga_home" REAL, -- Field goals attempted by the home team
|
| 67 |
+
"fg_pct_home" REAL, -- Field goal percentage of the home team
|
| 68 |
+
"fg3m_home" REAL, -- Three-point field goals made by the home team
|
| 69 |
+
"fg3a_home" REAL, -- Three-point attempts by the home team
|
| 70 |
+
"fg3_pct_home" REAL, -- Three-point field goal percentage of the home team
|
| 71 |
+
"ftm_home" REAL, -- Free throws made by the home team
|
| 72 |
+
"fta_home" REAL, -- Free throws attempted by the home team
|
| 73 |
+
"ft_pct_home" REAL, -- Free throw percentage of the home team
|
| 74 |
+
"oreb_home" REAL, -- Offensive rebounds by the home team
|
| 75 |
+
"dreb_home" REAL, -- Defensive rebounds by the home team
|
| 76 |
+
"reb_home" REAL, -- Total rebounds by the home team
|
| 77 |
+
"ast_home" REAL, -- Assists by the home team
|
| 78 |
+
"stl_home" REAL, -- Steals by the home team
|
| 79 |
+
"blk_home" REAL, -- Blocks by the home team
|
| 80 |
+
"tov_home" REAL, -- Turnovers by the home team
|
| 81 |
+
"pf_home" REAL, -- Personal fouls by the home team
|
| 82 |
+
"pts_home" REAL, -- Total points scored by the home team
|
| 83 |
+
"plus_minus_home" INTEGER, -- Plus/minus rating for the home team
|
| 84 |
+
"video_available_home" INTEGER, -- Indicates whether video is available (1 = Yes, 0 = No)
|
| 85 |
+
"team_id_away" TEXT, -- ID of the away team
|
| 86 |
+
"team_abbreviation_away" TEXT, -- Abbreviation of the away team
|
| 87 |
+
"team_name_away" TEXT, -- Full name of the away team
|
| 88 |
+
"matchup_away" TEXT, -- Matchup details from the away team’s perspective
|
| 89 |
+
"wl_away" TEXT, -- "W" if the away team won, "L" if they lost
|
| 90 |
+
"fgm_away" REAL, -- Field goals made by the away team
|
| 91 |
+
"fga_away" REAL, -- Field goals attempted by the away team
|
| 92 |
+
"fg_pct_away" REAL, -- Field goal percentage of the away team
|
| 93 |
+
"fg3m_away" REAL, -- Three-point field goals made by the away team
|
| 94 |
+
"fg3a_away" REAL, -- Three-point attempts by the away team
|
| 95 |
+
"fg3_pct_away" REAL, -- Three-point field goal percentage of the away team
|
| 96 |
+
"ftm_away" REAL, -- Free throws made by the away team
|
| 97 |
+
"fta_away" REAL, -- Free throws attempted by the away team
|
| 98 |
+
"ft_pct_away" REAL, -- Free throw percentage of the away team
|
| 99 |
+
"oreb_away" REAL, -- Offensive rebounds by the away team
|
| 100 |
+
"dreb_away" REAL, -- Defensive rebounds by the away team
|
| 101 |
+
"reb_away" REAL, -- Total rebounds by the away team
|
| 102 |
+
"ast_away" REAL, -- Assists by the away team
|
| 103 |
+
"stl_away" REAL, -- Steals by the away team
|
| 104 |
+
"blk_away" REAL, -- Blocks by the away team
|
| 105 |
+
"tov_away" REAL, -- Turnovers by the away team
|
| 106 |
+
"pf_away" REAL, -- Personal fouls by the away team
|
| 107 |
+
"pts_away" REAL, -- Total points scored by the away team
|
| 108 |
+
"plus_minus_away" INTEGER, -- Plus/minus rating for the away team
|
| 109 |
+
"video_available_away" INTEGER, -- Indicates whether video is available (1 = Yes, 0 = No)
|
| 110 |
+
"season_type" TEXT -- Regular season or playoffs
|
| 111 |
+
);
|
| 112 |
+
''',
|
| 113 |
+
'''other_stats Table
|
| 114 |
+
Stores additional statistics, linked to the game table via game_id.
|
| 115 |
+
CREATE TABLE IF NOT EXISTS "other_stats" (
|
| 116 |
+
"game_id" TEXT, -- Unique game identifier, matches id column from game table
|
| 117 |
+
"league_id" TEXT, -- League identifier
|
| 118 |
+
"team_id_home" TEXT, -- Home team identifier
|
| 119 |
+
"team_abbreviation_home" TEXT, -- Home team abbreviation
|
| 120 |
+
"team_city_home" TEXT, -- Home team city
|
| 121 |
+
"pts_paint_home" INTEGER, -- Points in the paint by the home team
|
| 122 |
+
"pts_2nd_chance_home" INTEGER, -- Second chance points by the home team
|
| 123 |
+
"pts_fb_home" INTEGER, -- Fast break points by the home team
|
| 124 |
+
"largest_lead_home" INTEGER,-- Largest lead by the home team
|
| 125 |
+
"lead_changes" INTEGER, -- Number of lead changes
|
| 126 |
+
"times_tied" INTEGER, -- Number of times the score was tied
|
| 127 |
+
"team_turnovers_home" INTEGER, -- Home team turnovers
|
| 128 |
+
"total_turnovers_home" INTEGER, -- Total turnovers by the home team
|
| 129 |
+
"team_rebounds_home" INTEGER, -- Home team rebounds
|
| 130 |
+
"pts_off_to_home" INTEGER, -- Points off turnovers by the home team
|
| 131 |
+
"team_id_away" TEXT, -- Away team identifier
|
| 132 |
+
"team_abbreviation_away" TEXT, -- Away team abbreviation
|
| 133 |
+
"pts_paint_away" INTEGER, -- Points in the paint by the away team
|
| 134 |
+
"pts_2nd_chance_away" INTEGER, -- Second chance points by the away team
|
| 135 |
+
"pts_fb_away" INTEGER, -- Fast break points by the away team
|
| 136 |
+
"largest_lead_away" INTEGER,-- Largest lead by the away team
|
| 137 |
+
"team_turnovers_away" INTEGER, -- Away team turnovers
|
| 138 |
+
"total_turnovers_away" INTEGER, -- Total turnovers by the away team
|
| 139 |
+
"team_rebounds_away" INTEGER, -- Away team rebounds
|
| 140 |
+
"pts_off_to_away" INTEGER -- Points off turnovers by the away team
|
| 141 |
+
);
|
| 142 |
+
''',
|
| 143 |
+
'''Team Name Information
|
| 144 |
+
In plaintext user questions, only the full team names will be used, but in the queries you may use either full names or abbreviations.
|
| 145 |
+
Full names are used with the game table, while abbreviations should be used with the other_stats table.
|
| 146 |
+
Team names and abbreviations (separated by |):
|
| 147 |
+
Atlanta Hawks|ATL, Boston Celtics|BOS, Cleveland Cavaliers|CLE, New Orleans Pelicans|NOP,
|
| 148 |
+
Chicago Bulls|CHI, Dallas Mavericks|DAL, Denver Nuggets|DEN, Golden State Warriors|GSW,
|
| 149 |
+
Houston Rockets|HOU, Los Angeles Clippers|LAC, Los Angeles Lakers|LAL, Miami Heat|MIA,
|
| 150 |
+
Milwaukee Bucks|MIL, Minnesota Timberwolves|MIN, Brooklyn Nets|BKN, New York Knicks|NYK,
|
| 151 |
+
Orlando Magic|ORL, Indiana Pacers|IND, Philadelphia 76ers|PHI, Phoenix Suns|PHX,
|
| 152 |
+
Portland Trail Blazers|POR, Sacramento Kings|SAC, San Antonio Spurs|SAS,
|
| 153 |
+
Oklahoma City Thunder|OKC, Toronto Raptors|TOR, Utah Jazz|UTA, Memphis Grizzlies|MEM,
|
| 154 |
+
Washington Wizards|WAS, Detroit Pistons|DET, Charlotte Hornets|CHA
|
| 155 |
+
'''
|
| 156 |
+
]
|
| 157 |
+
|
| 158 |
+
retriever.add_documents(metadata_docs)
|
| 159 |
+
|
| 160 |
+
# ------------------------------
|
| 161 |
+
# Define a function to compare model output to ground truth
|
| 162 |
+
# ------------------------------
|
| 163 |
+
def compare_result(sample_query, sample_result, generated_query, actual_result):
|
| 164 |
+
# Remove any prefixes from the generated query
|
| 165 |
+
if generated_query.startswith("SQLite: "):
|
| 166 |
+
query = generated_query[len("SQLite: "):]
|
| 167 |
+
elif generated_query.startswith("SQL: "):
|
| 168 |
+
query = generated_query[len("SQL: "):]
|
| 169 |
+
else:
|
| 170 |
+
query = generated_query
|
| 171 |
+
|
| 172 |
+
# Truncate query after the first semicolon (if present)
|
| 173 |
+
semicolon_index = query.find(";")
|
| 174 |
+
if semicolon_index != -1:
|
| 175 |
+
query = query[:semicolon_index+1]
|
| 176 |
+
|
| 177 |
+
# Simple function to clean strings: removes whitespace and lowercases.
|
| 178 |
+
clean_str = lambda s: "".join(s.split()).lower()
|
| 179 |
+
|
| 180 |
+
# Compare the generated query text with the sample query.
|
| 181 |
+
query_match = (clean_str(query) == clean_str(sample_query))
|
| 182 |
+
|
| 183 |
+
# Compare the expected result and the actual result numerically if possible.
|
| 184 |
+
try:
|
| 185 |
+
sample_val = float(sample_result)
|
| 186 |
+
actual_val = float(actual_result)
|
| 187 |
+
result_match = math.isclose(sample_val, actual_val, abs_tol=1e-6)
|
| 188 |
+
except Exception:
|
| 189 |
+
# Otherwise, do a cleaned string comparison.
|
| 190 |
+
result_match = (clean_str(str(sample_result)) == clean_str(str(actual_result)))
|
| 191 |
+
|
| 192 |
+
overall_valid = query_match and result_match
|
| 193 |
+
|
| 194 |
+
# Debug output.
|
| 195 |
+
print("DEBUG: Expected Result (from dataset):", sample_result)
|
| 196 |
+
print("DEBUG: Actual DB Result:", actual_result)
|
| 197 |
+
try:
|
| 198 |
+
sample_val = float(sample_result)
|
| 199 |
+
actual_val = float(actual_result)
|
| 200 |
+
print("DEBUG: Numeric Comparison result:", math.isclose(sample_val, actual_val, abs_tol=1e-6))
|
| 201 |
+
except Exception:
|
| 202 |
+
print("DEBUG: Numeric Comparison: N/A")
|
| 203 |
+
|
| 204 |
+
return overall_valid, query_match, result_match
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
# ------------------------------
|
| 208 |
+
# Function to evaluate the model on a given dataset
|
| 209 |
+
# ------------------------------
|
| 210 |
+
def run_evaluation(nba_df, title):
|
| 211 |
+
counter = 0
|
| 212 |
+
num_valid = 0
|
| 213 |
+
num_sql_matched = 0
|
| 214 |
+
num_result_matched = 0
|
| 215 |
+
for index, row in nba_df.iterrows():
|
| 216 |
+
# Retrieve relevant schema chunks via RAG
|
| 217 |
+
relevant_schemas = retriever.retrieve(row["natural_query"], top_k=2)
|
| 218 |
+
schema_block = "\n\n".join(relevant_schemas)
|
| 219 |
+
|
| 220 |
+
# Build the prompt with instructions, schema, examples, and current request.
|
| 221 |
+
input_text = f"""
|
| 222 |
+
You are an AI assistant that generates SQL queries for an NBA database based on user questions.
|
| 223 |
+
|
| 224 |
+
### Relevant Schema:
|
| 225 |
+
{schema_block}
|
| 226 |
+
|
| 227 |
+
### Instructions:
|
| 228 |
+
- Generate a valid SQL query to retrieve relevant data from the database.
|
| 229 |
+
- Use column names correctly based on the provided schema.
|
| 230 |
+
- Output only the SQL query as plain text.
|
| 231 |
+
|
| 232 |
+
### Example Queries:
|
| 233 |
+
Use team_name_home and team_name_away to match teams to the game table.
|
| 234 |
+
Use team_abbreviation_home and team_abbreviation away to match teams to the other_stats table.
|
| 235 |
+
To filter by season, use season_id = '2YYYY'.
|
| 236 |
+
Example: season_id = '22005' for 2005.
|
| 237 |
+
Ensure queries return relevant columns and avoid unnecessary joins.
|
| 238 |
+
|
| 239 |
+
Example User Requests and SQLite Queries
|
| 240 |
+
Request:
|
| 241 |
+
"What is the most points the Los Angeles Lakers have ever scored at home?"
|
| 242 |
+
SQLite:
|
| 243 |
+
SELECT MAX(pts_home)
|
| 244 |
+
FROM game
|
| 245 |
+
WHERE team_name_home = 'Los Angeles Lakers';
|
| 246 |
+
|
| 247 |
+
Request:
|
| 248 |
+
"Which teams are located in the state of California?"
|
| 249 |
+
SQLite:
|
| 250 |
+
SELECT full_name FROM team WHERE state = 'California';
|
| 251 |
+
|
| 252 |
+
Request:
|
| 253 |
+
"Which team had the highest number of team turnovers in an away game?"
|
| 254 |
+
SQLite:
|
| 255 |
+
SELECT team_abbreviation_away FROM other_stats ORDER BY team_turnovers_away DESC LIMIT 1;
|
| 256 |
+
|
| 257 |
+
Request:
|
| 258 |
+
"Which teams were founded before 1979?"
|
| 259 |
+
SQLite:
|
| 260 |
+
SELECT full_name FROM team WHERE year_founded < 1979;
|
| 261 |
+
|
| 262 |
+
Request:
|
| 263 |
+
"Find the Boston Celtics largest home victory margin in the 2008 season."
|
| 264 |
+
SQLite:
|
| 265 |
+
SELECT MAX(pts_home - pts_away) AS biggest_win
|
| 266 |
+
FROM game
|
| 267 |
+
WHERE team_name_home = 'Boston Celtics' AND season_id = '22008';
|
| 268 |
+
|
| 269 |
+
Generate only the SQLite query prefaced by SQLite: and no other text. Now generate an SQLite query for the following user request.
|
| 270 |
+
Request: {row["natural_query"]}
|
| 271 |
+
"""
|
| 272 |
+
messages = [{'role': 'user', 'content': input_text}]
|
| 273 |
+
prompt_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
| 274 |
+
inputs = tokenizer(prompt_text, return_tensors="pt", padding=True).to(model.device)
|
| 275 |
+
|
| 276 |
+
outputs = model.generate(
|
| 277 |
+
**inputs,
|
| 278 |
+
max_new_tokens=512,
|
| 279 |
+
do_sample=False,
|
| 280 |
+
top_k=50,
|
| 281 |
+
top_p=0.95,
|
| 282 |
+
num_return_sequences=1,
|
| 283 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 284 |
+
pad_token_id=tokenizer.eos_token_id
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
# Decode the model output.
|
| 288 |
+
generated_query = tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True)
|
| 289 |
+
|
| 290 |
+
# Clean generated query: remove any prefix and truncate after first semicolon.
|
| 291 |
+
if generated_query.startswith("SQLite:"):
|
| 292 |
+
clean_query = generated_query[len("SQLite:"):].strip()
|
| 293 |
+
elif generated_query.startswith("SQL:"):
|
| 294 |
+
clean_query = generated_query[len("SQL:"):].strip()
|
| 295 |
+
else:
|
| 296 |
+
clean_query = generated_query.strip()
|
| 297 |
+
|
| 298 |
+
semicolon_idx = clean_query.find(";")
|
| 299 |
+
if semicolon_idx != -1:
|
| 300 |
+
clean_query = clean_query[:semicolon_idx+1]
|
| 301 |
+
|
| 302 |
+
# Execute the cleaned query on the SQLite DB to obtain the actual result.
|
| 303 |
+
try:
|
| 304 |
+
cursor.execute(clean_query)
|
| 305 |
+
rows = cursor.fetchall()
|
| 306 |
+
if rows and isinstance(rows[0], (tuple, list)) and len(rows[0]) > 0:
|
| 307 |
+
actual_result = rows[0][0]
|
| 308 |
+
elif rows:
|
| 309 |
+
actual_result = rows[0]
|
| 310 |
+
else:
|
| 311 |
+
actual_result = ""
|
| 312 |
+
except Exception as e:
|
| 313 |
+
actual_result = "Error executing query: " + str(e)
|
| 314 |
+
|
| 315 |
+
# Compare the ground truth query and expected result to the generated query and actual result.
|
| 316 |
+
valid, sql_matched, result_matched = compare_result(row["sql_query"], row["result"], generated_query, actual_result)
|
| 317 |
+
print("=============================================")
|
| 318 |
+
print(f"Overall Valid: {valid}")
|
| 319 |
+
print(f"SQL Query Matched: {sql_matched}")
|
| 320 |
+
print(f"Result Matched: {result_matched}")
|
| 321 |
+
print("=============================================\n")
|
| 322 |
+
|
| 323 |
+
# Print debug output.
|
| 324 |
+
print("----- Ground Truth SQL Query -----")
|
| 325 |
+
print(row["sql_query"])
|
| 326 |
+
print("------------------------------------\n")
|
| 327 |
+
print("----- Model Generated SQL Query -----")
|
| 328 |
+
print(generated_query)
|
| 329 |
+
print("---------------------------------------\n")
|
| 330 |
+
|
| 331 |
+
print("----- Expected Result -----")
|
| 332 |
+
print(row["result"])
|
| 333 |
+
print("----- Actual DB Result -----")
|
| 334 |
+
print(actual_result)
|
| 335 |
+
print("-------------------------------------------------\n")
|
| 336 |
+
|
| 337 |
+
if valid:
|
| 338 |
+
num_valid += 1
|
| 339 |
+
if sql_matched:
|
| 340 |
+
num_sql_matched += 1
|
| 341 |
+
if result_matched:
|
| 342 |
+
num_result_matched += 1
|
| 343 |
+
|
| 344 |
+
counter += 1
|
| 345 |
+
|
| 346 |
+
# CONTROL ITERS
|
| 347 |
+
# if counter == 2:
|
| 348 |
+
# break
|
| 349 |
+
|
| 350 |
+
if counter % 50 == 0:
|
| 351 |
+
print("Completed " + str(counter))
|
| 352 |
+
|
| 353 |
+
print("\n" + title + " results:")
|
| 354 |
+
print("Percent valid: " + str(num_valid / len(nba_df)))
|
| 355 |
+
print("Percent SQLite matched: " + str(num_sql_matched / len(nba_df)))
|
| 356 |
+
print("Percent result matched: " + str(num_result_matched / len(nba_df)))
|
| 357 |
+
print("Dataset length: " + str(len(nba_df)))
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
# ------------------------------
|
| 361 |
+
# Run evaluation on the full training dataset
|
| 362 |
+
# ------------------------------
|
| 363 |
+
run_evaluation(df, "All training data")
|
| 364 |
+
print("Dataset length: " + str(len(df)))
|