Commit
·
0b6cac6
1
Parent(s):
5344658
update notes on inference
Browse files
README.md
CHANGED
|
@@ -10,14 +10,48 @@ tags:
|
|
| 10 |
- llama
|
| 11 |
- llama-2
|
| 12 |
- hosted inference
|
|
|
|
|
|
|
|
|
|
| 13 |
---
|
| 14 |
# Llama 2 - hosted inference
|
| 15 |
|
| 16 |
This is simply an 8-bit version of the Llama-2-7B model.
|
| 17 |
- 8-bits allows the model to be below 10 GB
|
| 18 |
- This allows for hosted inference of the model on the model's home page
|
|
|
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
Below follows information on the original Llama 2 model...
|
| 23 |
|
|
|
|
| 10 |
- llama
|
| 11 |
- llama-2
|
| 12 |
- hosted inference
|
| 13 |
+
- 8 bit
|
| 14 |
+
- 8bit
|
| 15 |
+
- 8-bit
|
| 16 |
---
|
| 17 |
# Llama 2 - hosted inference
|
| 18 |
|
| 19 |
This is simply an 8-bit version of the Llama-2-7B model.
|
| 20 |
- 8-bits allows the model to be below 10 GB
|
| 21 |
- This allows for hosted inference of the model on the model's home page
|
| 22 |
+
- Note that inference may be slow unless you have a HuggingFace Pro plan.
|
| 23 |
|
| 24 |
+
If you want to run inference yourself (e.g. in a Colab notebook) you can try:
|
| 25 |
+
```
|
| 26 |
+
!pip install -q -U git+https://github.com/huggingface/accelerate.git
|
| 27 |
+
!pip install -q -U bitsandbytes
|
| 28 |
+
!pip install -q -U git+https://github.com/huggingface/transformers.git
|
| 29 |
+
|
| 30 |
+
model_id = 'Trelis/Llama-2-7b-chat-hf-hosted-inference-8bit'
|
| 31 |
+
|
| 32 |
+
import transformers
|
| 33 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline, TextStreamer
|
| 34 |
+
|
| 35 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto')
|
| 36 |
+
|
| 37 |
+
#Llama 2 Inference
|
| 38 |
+
def stream(user_prompt):
|
| 39 |
+
system_prompt = 'You are a helpful assistant that provides accurate and concise responses'
|
| 40 |
+
|
| 41 |
+
B_INST, E_INST = "[INST]", "[/INST]"
|
| 42 |
+
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
| 43 |
+
|
| 44 |
+
prompt = f"{B_INST} {B_SYS}{system_prompt.strip()}{E_SYS}{user_prompt.strip()} {E_INST}\n\n"
|
| 45 |
+
|
| 46 |
+
inputs = tokenizer([prompt], return_tensors="pt").to("cuda:0")
|
| 47 |
+
|
| 48 |
+
streamer = TextStreamer(tokenizer)
|
| 49 |
+
|
| 50 |
+
# Despite returning the usual output, the streamer will also print the generated text to stdout.
|
| 51 |
+
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=500)
|
| 52 |
+
|
| 53 |
+
stream('Count to ten')
|
| 54 |
+
```
|
| 55 |
|
| 56 |
Below follows information on the original Llama 2 model...
|
| 57 |
|