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Abstract

Autoregressive transformer models, the dominant architecture for modern Large Language Models (LLMs), are
fundamentally constrained by high inference latency due to their sequential generation process. In this paper,
I propose Scaffold-and-Fill Diffusion (SF-Diff), a novel hybrid architecture designed to significantly accelerate
text generation by deconstructing the task into two parallelizable stages. The core hypothesis is that natural
language can be separated into a semantic ”scaffolding” of keywords and a grammatical ”filler” of structural
words. SF-Diff first utilizes a non-autoregressive diffusion model to generate the complete semantic scaffold,
a sequence of keyword vector embeddings, in a fixed number of highly parallelizable steps. Subsequently, a
lightweight autoregressive transformer decoder performs a ”grammatical infilling” task, weaving the structural
words around the pre-generated semantic core. This approach aims to combine the holistic, parallel generation
strengths of diffusion models with the grammatical precision of transformers, offering a substantial reduction in
inference latency while maintaining high-quality, coherent output.

1 Introduction
The generative capabilities of Large Language Models (LLMs) based on the Transformer architecture [8] have
established a new paradigm in artificial intelligence. Models such as the GPT series [5] and Llama [7] have
demonstrated an impressive ability to generate fluent and coherent text. However, this fluency is achieved via an
autoregressive process, where each token is generated sequentially based on all previously generated tokens. This
creates a direct, linear relationship between output length and inference time, O(n), which is a significant barrier
for real-time, interactive applications.

While techniques like speculative decoding [3] aim to mitigate this, they remain within the autoregressive
framework. In this paper, I introduce a theoretical framework for a new architecture, Scaffold-and-Fill Diffusion
(SF-Diff), that reimagines the generation process itself.

My approach is based on the linguistic observation that sentences are composed of two distinct components:

1. Semantic Scaffolding: A core set of keywords (nouns, verbs, adjectives, adverbs) that carry the primary
meaning.

2. Grammatical Filler: A set of functional words (determiners, prepositions, conjunctions) that provide gram-
matical structure.

SF-Diff leverages this separation by using two specialized models: a non-autoregressive diffusion model to gen-
erate the entire semantic scaffold in parallel, and a fast autoregressive decoder to weave the grammatical filler
around it.

2 Related Work and Architectural Context
My work builds upon several key areas of modern machine learning research.

• Autoregressive Models: The ”filler” stage of my proposed architecture is a standard Transformer decoder,
leveraging its proven ability to handle local grammatical dependencies with high fidelity.



• Diffusion Models & Hybrid Architectures: Denoising Diffusion Probabilistic Models (DDPMs) [2] have
set a high bar for high-fidelity generation. While they are best known in image synthesis [6], adapting
diffusion to discrete data like text is an active, evolving field [4]. Recent work highlights the power of hybrid
models combining Transformers with diffusion mechanisms. For instance, Google DeepMind’s Gemini
Diffusion integrates a diffusion process with a Transformer backbone to deliver state-of-the-art performance
in text and code synthesis, enabling fast, block-wise generation and iterative refinement, quite distinct from
diffusion designs intended for image output. This model exemplifies the principle of using deep semantic
conditioning via a Transformer before applying a diffusion step. My SF-Diff proposal draws on this hybrid
strategy but inverts the workflow: using diffusion for intermediate semantic structure scaffolding and relying
on the Transformer for the final grammatical decoding in accelerated text-to-text generation.

• Non-Autoregressive Transformers (NAT): Early attempts to parallelize text generation, such as NAT [1],
tried to generate all tokens simultaneously. These models were fast but often produced incoherent text
due to the ”multimodality problem.” SF-Diff mitigates this by only generating the high-level semantic core
non-autoregressively, leaving the fine-grained grammatical details to a more suitable autoregressive model.

3 Proposed Architecture: SF-Diff
The SF-Diff architecture is a multi-stage pipeline designed for fast inference.

3.1 Data Preparation: Deconstructing Language
A crucial prerequisite is a method to separate text into keywords and filler. I propose using a standard Part-of-
Speech (POS) tagger. For a sentence S, I generate a sequence of keyword tokens Wk = {k1, k2, ..., kn} and a
corresponding structural pattern P = {p1, p2, ..., pm}, where each pi is either a placeholder token <KEYWORD>
or a functional ”filler” word.

3.2 Stage 1: The Diffusion Scaffolder
This non-autoregressive model is responsible for generating the semantic core of the response. It is a conditional
denoising diffusion model trained on sequences of keyword vector embeddings. The forward process q adds
Gaussian noise over T timesteps with a variance schedule βt. The model ϵθ is a neural network trained to predict
this noise from a noisy input Et

k at timestep t, conditioned on the user’s prompt Cp and the structural pattern P .
The training objective is to minimize the L2 loss:
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where ᾱt is the cumulative product of (1 − βt). At inference, this model starts with pure noise and iteratively
denoises it in a fixed number of parallel steps to produce the final semantic scaffold E0

k .

3.3 Stage 2: The Transformer Filler
This lightweight autoregressive model renders the semantic scaffold into fluent text. It is a decoder-only Trans-
former modified with cross-attention layers.

• Self-Attention: Attends to the previously generated filler words to maintain grammatical fluency.

• Cross-Attention: Attends to the entire sequence of keyword embeddings E0
k from the diffusion model,

allowing every filler word to ”see” the full semantic plan.

The model is trained to maximize the log-probability of the correct filler words Wf given the ground-truth key-
words:

Lfill = −
∑

log p(wi|w<i, E
0
k, P ) (2)

4 Potential Advantages and Discussion
1. Inference Speed: The primary advantage. The semantically heavy part of generation is done in a fixed

number of parallel steps by the diffusion model. This could decouple inference time from output length for
the most complex part of the task.
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2. Controllability: The explicit structural pattern P serves as a powerful control vector. By providing different
patterns, a user could guide the model to generate text with a specific style, meter, or complexity.

3. Hybrid Strengths: The architecture leverages the best of both worlds: the holistic, parallel nature of diffu-
sion for semantic planning and the high-fidelity, sequential nature of transformers for grammatical precision.

5 Challenges and Future Work
• Structural Pattern Generation: The generation of a coherent structural pattern P at inference time is a

non-trivial challenge. This may require a third, highly optimized model, or the diffusion model may need
to be conditioned on the prompt alone.

• Error Propagation: The Transformer Filler must be robust to imperfections in the semantic scaffold gen-
erated by the diffusion model. If the keyword embeddings are semantically incoherent, the decoder may
struggle to produce a fluent output.

• Training Pipeline Complexity: This is a multi-stage system requiring a sophisticated training pipeline to
ensure the two models learn to cooperate effectively.

6 Conclusion
SF-Diff presents a theoretical framework for a hybrid text generation architecture that diverges from the purely
autoregressive paradigm. By separating semantic generation from grammatical infilling, it has the potential to
drastically reduce inference latency. While significant engineering challenges remain, the ”Scaffold-and-Fill”
approach I have outlined offers a promising new direction for building faster, more controllable language models.
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