# Copyright (c) OpenMMLab. All rights reserved. import warnings import torch import torch.nn as nn import torch.nn.functional as F from .registry import MODELS TORCH_VERSION = torch.__version__ def resize(input, size=None, scale_factor=None, mode='nearest', align_corners=None, warning=True): if warning: if size is not None and align_corners: input_h, input_w = tuple(int(x) for x in input.shape[2:]) output_h, output_w = tuple(int(x) for x in size) if output_h > input_h or output_w > output_h: if ((output_h > 1 and output_w > 1 and input_h > 1 and input_w > 1) and (output_h - 1) % (input_h - 1) and (output_w - 1) % (input_w - 1)): warnings.warn( f'When align_corners={align_corners}, ' 'the output would more aligned if ' f'input size {(input_h, input_w)} is `x+1` and ' f'out size {(output_h, output_w)} is `nx+1`') return F.interpolate(input, size, scale_factor, mode, align_corners) @MODELS.register_module('Conv', force=True) class Conv2d(nn.Conv2d): def forward(self, x: torch.Tensor) -> torch.Tensor: if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)): out_shape = [x.shape[0], self.out_channels] for i, k, p, s, d in zip(x.shape[-2:], self.kernel_size, self.padding, self.stride, self.dilation): o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1 out_shape.append(o) empty = NewEmptyTensorOp.apply(x, out_shape) if self.training: # produce dummy gradient to avoid DDP warning. dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 return empty + dummy else: return empty return super().forward(x) class NewEmptyTensorOp(torch.autograd.Function): @staticmethod def forward(ctx, x: torch.Tensor, new_shape: tuple) -> torch.Tensor: ctx.shape = x.shape return x.new_empty(new_shape) @staticmethod def backward(ctx, grad: torch.Tensor) -> tuple: shape = ctx.shape return NewEmptyTensorOp.apply(grad, shape), None def obsolete_torch_version(torch_version, version_threshold) -> bool: return torch_version == 'parrots' or torch_version <= version_threshold @MODELS.register_module() class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). We follow the implementation https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py # noqa: E501 Args: drop_prob (float): Probability of the path to be zeroed. Default: 0.1 """ def __init__(self, drop_prob: float = 0.1): super().__init__() self.drop_prob = drop_prob def forward(self, x: torch.Tensor) -> torch.Tensor: return drop_path(x, self.drop_prob, self.training) def drop_path(x: torch.Tensor, drop_prob: float = 0., training: bool = False) -> torch.Tensor: """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). We follow the implementation https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py # noqa: E501 """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob # handle tensors with different dimensions, not just 4D tensors. shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) random_tensor = keep_prob + torch.rand( shape, dtype=x.dtype, device=x.device) output = x.div(keep_prob) * random_tensor.floor() return output