from typing import Union, List, Tuple import numpy as np import torch from .utils import benchmark device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') def random_benchmark( model: torch.nn.Module, batch_size: Union[int, List[int]] = 1, image_size: Union[Tuple[int], List[Tuple[int]]] = (3, 1024, 1024), ): """ Calculate the FPS of a given model using randomly generated tensors. Args: model: instance of a model (e.g. SegFormer) batch_size: the batch size(s) at which to calculate the FPS (e.g. 1 or [1, 2, 4]) image_size: the size of the images to use (e.g. (3, 1024, 1024)) Returns: the FPS values calculated for all image sizes and batch sizes in the form of a dictionary """ if isinstance(batch_size, int): batch_size = [batch_size] if isinstance(image_size, tuple): image_size = [image_size] values = {} throughput_values = [] for i in image_size: # fill with fps for each batch size fps = [] for b in batch_size: for _ in range(4): # Baseline benchmark if i[1] >= 1024: r = 16 else: r = 32 baseline_throughput = benchmark( model.to(device), device=device, verbose=True, runs=r, batch_size=b, input_size=i ) throughput_values.append(baseline_throughput) throughput_values = np.asarray(throughput_values) throughput = np.around(np.mean(throughput_values), decimals=2) print('Im_size:', i, 'Batch_size:', b, 'Mean:', throughput, 'Std:', np.around(np.std(throughput_values), decimals=2)) throughput_values = [] fps.append({b: throughput}) values[i] = fps return values