Tim77777767 commited on
Commit
b7716fe
·
1 Parent(s): 762b1e6

Anpassungen preTrained

Browse files
Files changed (1) hide show
  1. preTrainedTest.py +0 -9
preTrainedTest.py CHANGED
@@ -23,15 +23,9 @@ model.to(device).eval()
23
  image_path = "segformer_plusplus/cityscape/berlin_000543_000019_leftImg8bit.png"
24
  image = Image.open(image_path).convert("RGB")
25
 
26
- # --- Start of changes to match cityscape_benchmark ---
27
- # Define the target image size as in cityscape_benchmark's default
28
- # cityscape_benchmark uses (3, 1024, 1024), so spatial size is 1024x1024
29
  target_image_height = 1024
30
  target_image_width = 1024
31
 
32
- # Calculate mean and std dynamically from the image as done in cityscape_benchmark
33
- # Note: This is usually done over the entire training dataset for consistent normalization
34
- # For a single image, this just normalizes to its own mean/std.
35
  img_tensor_temp = T.ToTensor()(image)
36
  mean = img_tensor_temp.mean(dim=(1, 2)).tolist()
37
  std = img_tensor_temp.std(dim=(1, 2)).tolist()
@@ -39,21 +33,18 @@ std = img_tensor_temp.std(dim=(1, 2)).tolist()
39
  print(f"Calculated Mean (for this image): {mean}")
40
  print(f"Calculated Std (for this image): {std}")
41
 
42
- # Preprocessing - Adjusted to match cityscape_benchmark's T.Resize and T.Normalize
43
  transform = T.Compose([
44
  T.Resize((target_image_height, target_image_width)), # Resize to 1024x1024
45
  T.ToTensor(),
46
  T.Normalize(mean=mean, std=std) # Use dynamically calculated mean/std
47
  ])
48
  input_tensor = transform(image).unsqueeze(0).to(device)
49
- # --- End of changes ---
50
 
51
  print("Modell geladen, Bild geladen, Preprocessing abgeschlossen")
52
 
53
  # Inferenz
54
  with torch.no_grad():
55
  output = model(input_tensor)
56
- # This ensures you're always getting the raw logits if the model returns an object
57
  logits = output.logits if hasattr(output, "logits") else output
58
  pred = torch.argmax(logits, dim=1).squeeze(0).cpu().numpy()
59
 
 
23
  image_path = "segformer_plusplus/cityscape/berlin_000543_000019_leftImg8bit.png"
24
  image = Image.open(image_path).convert("RGB")
25
 
 
 
 
26
  target_image_height = 1024
27
  target_image_width = 1024
28
 
 
 
 
29
  img_tensor_temp = T.ToTensor()(image)
30
  mean = img_tensor_temp.mean(dim=(1, 2)).tolist()
31
  std = img_tensor_temp.std(dim=(1, 2)).tolist()
 
33
  print(f"Calculated Mean (for this image): {mean}")
34
  print(f"Calculated Std (for this image): {std}")
35
 
 
36
  transform = T.Compose([
37
  T.Resize((target_image_height, target_image_width)), # Resize to 1024x1024
38
  T.ToTensor(),
39
  T.Normalize(mean=mean, std=std) # Use dynamically calculated mean/std
40
  ])
41
  input_tensor = transform(image).unsqueeze(0).to(device)
 
42
 
43
  print("Modell geladen, Bild geladen, Preprocessing abgeschlossen")
44
 
45
  # Inferenz
46
  with torch.no_grad():
47
  output = model(input_tensor)
 
48
  logits = output.logits if hasattr(output, "logits") else output
49
  pred = torch.argmax(logits, dim=1).squeeze(0).cpu().numpy()
50