Tim77777767
commited on
Commit
·
66c5431
1
Parent(s):
c620883
Anpassungen an der modeling, sodass der Head nun direkt importiert, und nicht selbst implementiert ist
Browse files- modeling_my_segformer.py +15 -85
modeling_my_segformer.py
CHANGED
@@ -1,79 +1,10 @@
|
|
1 |
-
from transformers import PreTrainedModel
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
-
from
|
5 |
-
from segformer_plusplus.model.backbone.mit import MixVisionTransformer # Backbone-Import
|
6 |
-
from mix_vision_transformer_config import MySegformerConfig # Config-Import
|
7 |
-
|
8 |
-
# Head-Implementierung (vereinfacht)
|
9 |
-
class SegformerHead(nn.Module):
|
10 |
-
def __init__(self,
|
11 |
-
in_channels=[64, 128, 256, 512], # anpassen je nach Backbone-Ausgabe!
|
12 |
-
in_index=[0, 1, 2, 3],
|
13 |
-
channels=256,
|
14 |
-
dropout_ratio=0.1,
|
15 |
-
out_channels=19, # Anzahl Klassen anpassen!
|
16 |
-
norm_cfg=None,
|
17 |
-
align_corners=False,
|
18 |
-
interpolate_mode='bilinear'):
|
19 |
-
super().__init__()
|
20 |
-
self.in_channels = in_channels
|
21 |
-
self.in_index = in_index
|
22 |
-
self.channels = channels
|
23 |
-
self.dropout_ratio = dropout_ratio
|
24 |
-
self.out_channels = out_channels
|
25 |
-
self.norm_cfg = norm_cfg
|
26 |
-
self.align_corners = align_corners
|
27 |
-
self.interpolate_mode = interpolate_mode
|
28 |
-
|
29 |
-
self.act_cfg = dict(type='ReLU')
|
30 |
-
self.conv_seg = nn.Conv2d(channels, out_channels, kernel_size=1)
|
31 |
-
self.dropout = nn.Dropout2d(dropout_ratio) if dropout_ratio > 0 else None
|
32 |
-
|
33 |
-
num_inputs = len(in_channels)
|
34 |
-
assert num_inputs == len(in_index)
|
35 |
-
|
36 |
-
from segformer_plusplus.utils.activation import ConvModule
|
37 |
-
|
38 |
-
self.convs = nn.ModuleList()
|
39 |
-
for i in range(num_inputs):
|
40 |
-
self.convs.append(
|
41 |
-
ConvModule(
|
42 |
-
in_channels=in_channels[i],
|
43 |
-
out_channels=channels,
|
44 |
-
kernel_size=1,
|
45 |
-
stride=1,
|
46 |
-
bias=False,
|
47 |
-
norm_cfg=norm_cfg,
|
48 |
-
act_cfg=self.act_cfg))
|
49 |
-
|
50 |
-
self.fusion_conv = ConvModule(
|
51 |
-
in_channels=channels * num_inputs,
|
52 |
-
out_channels=channels,
|
53 |
-
kernel_size=1,
|
54 |
-
bias=False,
|
55 |
-
norm_cfg=norm_cfg)
|
56 |
-
|
57 |
-
def cls_seg(self, feat):
|
58 |
-
if self.dropout is not None:
|
59 |
-
feat = self.dropout(feat)
|
60 |
-
return self.conv_seg(feat)
|
61 |
-
|
62 |
-
def forward(self, inputs):
|
63 |
-
outs = []
|
64 |
-
for idx in range(len(inputs)):
|
65 |
-
x = inputs[idx]
|
66 |
-
conv = self.convs[idx]
|
67 |
-
outs.append(
|
68 |
-
resize(
|
69 |
-
input=conv(x),
|
70 |
-
size=inputs[0].shape[2:],
|
71 |
-
mode=self.interpolate_mode,
|
72 |
-
align_corners=self.align_corners))
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
|
79 |
class MySegformerForSemanticSegmentation(PreTrainedModel):
|
@@ -83,9 +14,9 @@ class MySegformerForSemanticSegmentation(PreTrainedModel):
|
|
83 |
def __init__(self, config):
|
84 |
super().__init__(config)
|
85 |
|
86 |
-
#
|
87 |
self.backbone = MixVisionTransformer(
|
88 |
-
embed_dims=config.embed_dims,
|
89 |
num_stages=config.num_stages,
|
90 |
num_layers=config.num_layers,
|
91 |
num_heads=config.num_heads,
|
@@ -100,16 +31,15 @@ class MySegformerForSemanticSegmentation(PreTrainedModel):
|
|
100 |
out_indices=config.out_indices
|
101 |
)
|
102 |
|
103 |
-
#
|
104 |
in_channels = config.embed_dims
|
105 |
if isinstance(in_channels, int):
|
106 |
in_channels = [in_channels]
|
107 |
|
108 |
-
print(f"config.embed_dims: {config.embed_dims}, type: {type(config.embed_dims)}")
|
109 |
self.segmentation_head = SegformerHead(
|
110 |
-
in_channels=
|
111 |
-
in_index=list(config.out_indices),
|
112 |
-
out_channels=
|
113 |
dropout_ratio=0.1,
|
114 |
align_corners=False
|
115 |
)
|
@@ -117,10 +47,10 @@ class MySegformerForSemanticSegmentation(PreTrainedModel):
|
|
117 |
self.post_init()
|
118 |
|
119 |
def forward(self, x):
|
120 |
-
# Backbone
|
121 |
-
features = self.backbone(x)
|
122 |
|
123 |
-
#
|
124 |
-
|
125 |
|
126 |
-
return
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
+
from transformers import PreTrainedModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
from segformer_plusplus.model.backbone.mit import MixVisionTransformer # Backbone
|
6 |
+
from mix_vision_transformer_config import MySegformerConfig # Config
|
7 |
+
from segformer_plusplus.model.head.segformer_head import SegformerHead # <-- dein Head
|
8 |
|
9 |
|
10 |
class MySegformerForSemanticSegmentation(PreTrainedModel):
|
|
|
14 |
def __init__(self, config):
|
15 |
super().__init__(config)
|
16 |
|
17 |
+
# Backbone (MixVisionTransformer)
|
18 |
self.backbone = MixVisionTransformer(
|
19 |
+
embed_dims=config.embed_dims, # z.B. [64, 128, 320, 512]
|
20 |
num_stages=config.num_stages,
|
21 |
num_layers=config.num_layers,
|
22 |
num_heads=config.num_heads,
|
|
|
31 |
out_indices=config.out_indices
|
32 |
)
|
33 |
|
34 |
+
# Head direkt importieren
|
35 |
in_channels = config.embed_dims
|
36 |
if isinstance(in_channels, int):
|
37 |
in_channels = [in_channels]
|
38 |
|
|
|
39 |
self.segmentation_head = SegformerHead(
|
40 |
+
in_channels=in_channels, # Liste der Embeddings aus Backbone
|
41 |
+
in_index=list(config.out_indices), # welche Feature Maps genutzt werden
|
42 |
+
out_channels=getattr(config, "num_classes", 19), # Anzahl Klassen
|
43 |
dropout_ratio=0.1,
|
44 |
align_corners=False
|
45 |
)
|
|
|
47 |
self.post_init()
|
48 |
|
49 |
def forward(self, x):
|
50 |
+
# Backbone → Features (Liste von Tensors)
|
51 |
+
features = self.backbone(x)
|
52 |
|
53 |
+
# Head → logits
|
54 |
+
logits = self.segmentation_head(features)
|
55 |
|
56 |
+
return {"logits": logits}
|