|
from typing import Any, Optional, Union |
|
import inspect |
|
import torch.nn as nn |
|
import torch |
|
|
|
from ..configs.config.config import Config, ConfigDict |
|
from .registry import Registry |
|
from ..utils.manager import ManagerMixin |
|
|
|
|
|
TORCH_VERSION = torch.__version__ |
|
|
|
def build_from_cfg( |
|
cfg: Union[dict, ConfigDict, Config], |
|
registry: Registry, |
|
default_args: Optional[Union[dict, ConfigDict, Config]] = None) -> Any: |
|
"""Build a module from config dict when it is a class configuration, or |
|
call a function from config dict when it is a function configuration. |
|
|
|
If the global variable default scope (:obj:`DefaultScope`) exists, |
|
:meth:`build` will firstly get the responding registry and then call |
|
its own :meth:`build`. |
|
|
|
At least one of the ``cfg`` and ``default_args`` contains the key "type", |
|
which should be either str or class. If they all contain it, the key |
|
in ``cfg`` will be used because ``cfg`` has a high priority than |
|
``default_args`` that means if a key exists in both of them, the value of |
|
the key will be ``cfg[key]``. They will be merged first and the key "type" |
|
will be popped up and the remaining keys will be used as initialization |
|
arguments. |
|
|
|
Args: |
|
cfg (dict or ConfigDict or Config): Config dict. It should at least |
|
contain the key "type". |
|
registry (:obj:`Registry`): The registry to search the type from. |
|
default_args (dict or ConfigDict or Config, optional): Default |
|
initialization arguments. Defaults to None. |
|
|
|
Returns: |
|
object: The constructed object. |
|
""" |
|
|
|
if not isinstance(cfg, (dict, ConfigDict, Config)): |
|
raise TypeError( |
|
f'cfg should be a dict, ConfigDict or Config, but got {type(cfg)}') |
|
|
|
if 'type' not in cfg: |
|
if default_args is None or 'type' not in default_args: |
|
raise KeyError( |
|
'`cfg` or `default_args` must contain the key "type", ' |
|
f'but got {cfg}\n{default_args}') |
|
|
|
if not isinstance(registry, Registry): |
|
raise TypeError('registry must be a mmengine.Registry object, ' |
|
f'but got {type(registry)}') |
|
|
|
if not (isinstance(default_args, |
|
(dict, ConfigDict, Config)) or default_args is None): |
|
raise TypeError( |
|
'default_args should be a dict, ConfigDict, Config or None, ' |
|
f'but got {type(default_args)}') |
|
|
|
args = cfg.copy() |
|
if default_args is not None: |
|
for name, value in default_args.items(): |
|
args.setdefault(name, value) |
|
|
|
scope = args.pop('_scope_', None) |
|
with registry.switch_scope_and_registry(scope) as registry: |
|
obj_type = args.pop('type') |
|
if isinstance(obj_type, str): |
|
obj_cls = registry.get(obj_type) |
|
if obj_cls is None: |
|
raise KeyError( |
|
f'{obj_type} is not in the {registry.scope}::{registry.name} registry. ' |
|
f'Please check whether the value of `{obj_type}` is ' |
|
) |
|
|
|
elif callable(obj_type): |
|
obj_cls = obj_type |
|
else: |
|
raise TypeError( |
|
f'type must be a str or valid type, but got {type(obj_type)}') |
|
|
|
|
|
|
|
|
|
if inspect.isclass(obj_cls) and \ |
|
issubclass(obj_cls, ManagerMixin): |
|
obj = obj_cls.get_instance(**args) |
|
else: |
|
obj = obj_cls(**args) |
|
return obj |
|
|
|
|
|
def build_model_from_cfg( |
|
cfg: Union[dict, ConfigDict, Config], |
|
registry: Registry, |
|
default_args: Optional[Union[dict, 'ConfigDict', 'Config']] = None |
|
) -> 'nn.Module': |
|
"""Build a PyTorch model from config dict(s). Different from |
|
``build_from_cfg``, if cfg is a list, a ``nn.Sequential`` will be built. |
|
|
|
Args: |
|
cfg (dict, list[dict]): The config of modules, which is either a config |
|
dict or a list of config dicts. If cfg is a list, the built |
|
modules will be wrapped with ``nn.Sequential``. |
|
registry (:obj:`Registry`): A registry the module belongs to. |
|
default_args (dict, optional): Default arguments to build the module. |
|
Defaults to None. |
|
|
|
Returns: |
|
nn.Module: A built nn.Module. |
|
""" |
|
from ..model.base_module import Sequential |
|
if isinstance(cfg, list): |
|
modules = [ |
|
build_from_cfg(_cfg, registry, default_args) for _cfg in cfg |
|
] |
|
return Sequential(*modules) |
|
else: |
|
return build_from_cfg(cfg, registry, default_args) |
|
|
|
|
|
class SyncBatchNorm(torch.nn.SyncBatchNorm): |
|
|
|
def _check_input_dim(self, input): |
|
if TORCH_VERSION == 'parrots': |
|
if input.dim() < 2: |
|
raise ValueError( |
|
f'expected at least 2D input (got {input.dim()}D input)') |
|
else: |
|
super()._check_input_dim(input) |