ThomasTheMaker commited on
Commit
fa77e49
·
verified ·
1 Parent(s): a72afe7

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ Arch-Router-1.5B-1.2.0.rkllm filter=lfs diff=lfs merge=lfs -text
Arch-Router-1.5B-1.2.0.rkllm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d668cdecd8b54a9c029f109b1f9a1d5ff32e1d52c678167bef4009c20c957819
3
+ size 2040247966
README.md ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - Qwen/Qwen2.5-1.5B-Instruct
4
+ language:
5
+ - en
6
+ library_name: transformers
7
+ license: other
8
+ license_name: katanemo-research
9
+ license_link: https://huggingface.co/katanemo/Arch-Router-1.5B/blob/main/LICENSE
10
+ pipeline_tag: text-generation
11
+ tags:
12
+ - routing
13
+ - preference
14
+ - arxiv:2506.16655
15
+ - llm
16
+ paper: https://arxiv.org/abs/2506.16655
17
+ ---
18
+
19
+ # katanemo/Arch-Router-1.5B
20
+
21
+ ## Overview
22
+ With the rapid proliferation of large language models (LLMs) -- each optimized for different strengths, style, or latency/cost profile -- routing has become an essential technique to operationalize the use of different models. However, existing LLM routing approaches are limited in two key ways: they evaluate performance using benchmarks that often fail to capture human preferences driven by subjective evaluation criteria, and they typically select from a limited pool of models.
23
+
24
+ We introduce a preference-aligned routing framework that guides model selection by matching queries to user-defined domains (e.g., travel) or action types (e.g., image editing) -- offering a practical mechanism to encode preferences in routing decisions. Specifically, we introduce Arch-Router, a compact 1.5B model that learns to map queries to domain-action preferences for model routing decisions. Experiments on conversational datasets demonstrate that our approach achieves state-of-the-art (SOTA) results in matching queries with human preferences, outperforming top proprietary models.
25
+
26
+ This model is described in the paper: https://arxiv.org/abs/2506.16655, and powers [Arch](https://github.com/katanemo/arch) the open-source AI-native proxy for agents to enable preference-based routing in a seamless way.
27
+
28
+ ### How It Works
29
+
30
+ To support effective routing, Arch-Router introduces two key concepts:
31
+ - **Domain** – the high-level thematic category or subject matter of a request (e.g., legal, healthcare, programming).
32
+ - **Action** – the specific type of operation the user wants performed (e.g., summarization, code generation, booking appointment, translation).
33
+
34
+ Both domain and action configs are associated with preferred models or model variants. At inference time, Arch-Router analyzes the incoming prompt to infer its domain and action using semantic similarity, task indicators, and contextual cues. It then applies the user-defined routing preferences to select the model best suited to handle the request.
35
+
36
+ ### Key Features
37
+
38
+ - **Structured Preference Routing**: Aligns prompt request with model strengths using explicit domain–action mappings.
39
+ - **Transparent and Controllable**: Makes routing decisions transparent and configurable, empowering users to customize system behavior.
40
+ - **Flexible and Adaptive**: Supports evolving user needs, model updates, and new domains/actions without retraining the router.
41
+ - **Production-Ready Performance**: Optimized for low-latency, high-throughput applications in multi-model environments.
42
+
43
+ # Requirements
44
+ The code of Arch-Router-1.5B has been in the Hugging Face `transformers` library and we advise you to install latest version:
45
+ ```bash
46
+ pip install transformers>=4.37.0
47
+ ```
48
+
49
+ # How to use
50
+ We use the following example to illustrate how to use our model to perform routing tasks. Please note that, our model works best with our provided prompt format.
51
+ ### Quickstart
52
+ ````python
53
+ import json
54
+ from typing import Any, Dict, List
55
+ from transformers import AutoModelForCausalLM, AutoTokenizer
56
+
57
+ model_name = "katanemo/Arch-Router-1.5B"
58
+ model = AutoModelForCausalLM.from_pretrained(
59
+ model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True
60
+ )
61
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
62
+
63
+ # Please use our provided prompt for best performance
64
+ TASK_INSTRUCTION = """
65
+ You are a helpful assistant designed to find the best suited route.
66
+ You are provided with route description within <routes></routes> XML tags:
67
+ <routes>
68
+
69
+ {routes}
70
+
71
+ </routes>
72
+
73
+ <conversation>
74
+
75
+ {conversation}
76
+
77
+ </conversation>
78
+ """
79
+
80
+ FORMAT_PROMPT = """
81
+ Your task is to decide which route is best suit with user intent on the conversation in <conversation></conversation> XML tags. Follow the instruction:
82
+ 1. If the latest intent from user is irrelevant or user intent is full filled, response with other route {"route": "other"}.
83
+ 2. You must analyze the route descriptions and find the best match route for user latest intent.
84
+ 3. You only response the name of the route that best matches the user's request, use the exact name in the <routes></routes>.
85
+
86
+ Based on your analysis, provide your response in the following JSON formats if you decide to match any route:
87
+ {"route": "route_name"}
88
+ """
89
+
90
+ # Define route config
91
+ route_config = [
92
+ {
93
+ "name": "code_generation",
94
+ "description": "Generating new code snippets, functions, or boilerplate based on user prompts or requirements",
95
+ },
96
+ {
97
+ "name": "bug_fixing",
98
+ "description": "Identifying and fixing errors or bugs in the provided code across different programming languages",
99
+ },
100
+ {
101
+ "name": "performance_optimization",
102
+ "description": "Suggesting improvements to make code more efficient, readable, or scalable",
103
+ },
104
+ {
105
+ "name": "api_help",
106
+ "description": "Assisting with understanding or integrating external APIs and libraries",
107
+ },
108
+ {
109
+ "name": "programming",
110
+ "description": "Answering general programming questions, theory, or best practices",
111
+ },
112
+ ]
113
+
114
+ # Helper function to create the system prompt for our model
115
+ def format_prompt(
116
+ route_config: List[Dict[str, Any]], conversation: List[Dict[str, Any]]
117
+ ):
118
+ return (
119
+ TASK_INSTRUCTION.format(
120
+ routes=json.dumps(route_config), conversation=json.dumps(conversation)
121
+ )
122
+ + FORMAT_PROMPT
123
+ )
124
+
125
+ # Define conversations
126
+
127
+ conversation = [
128
+ {
129
+ "role": "user",
130
+ "content": "fix this module 'torch.utils._pytree' has no attribute 'register_pytree_node'. did you mean: '_register_pytree_node'?",
131
+ }
132
+ ]
133
+
134
+ route_prompt = format_prompt(route_config, conversation)
135
+
136
+ messages = [
137
+ {"role": "user", "content": route_prompt},
138
+ ]
139
+
140
+ input_ids = tokenizer.apply_chat_template(
141
+ messages, add_generation_prompt=True, return_tensors="pt"
142
+ ).to(model.device)
143
+
144
+ # 2. Generate
145
+ generated_ids = model.generate(
146
+ input_ids=input_ids, # or just positional: model.generate(input_ids, …)
147
+ max_new_tokens=32768,
148
+ )
149
+
150
+ # 3. Strip the prompt from each sequence
151
+ prompt_lengths = input_ids.shape[1] # same length for every row here
152
+ generated_only = [
153
+ output_ids[prompt_lengths:] # slice off the prompt tokens
154
+ for output_ids in generated_ids
155
+ ]
156
+
157
+ # 4. Decode if you want text
158
+ response = tokenizer.batch_decode(generated_only, skip_special_tokens=True)[0]
159
+ print(response)
160
+ ````
161
+
162
+ Then you should be able to see the following output string in JSON format:
163
+ ````python
164
+ {"route": "bug_fixing"}
165
+ ````
166
+
167
+ To better understand how to create the route descriptions, please take a look at our [Katanemo API](https://docs.archgw.com/guides/llm_router.html).
168
+
169
+ # License
170
+ Katanemo Arch-Router model is distributed under the [Katanemo license](https://huggingface.co/katanemo/Arch-Router-1.5B/blob/main/LICENSE).
171
+
172
+ GitHub: https://github.com/katanemo/arch
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 1536,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 8960,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 21,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 28,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": 32768,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.51.3",
25
+ "use_cache": true,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151936
28
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.51.3"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "left",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff