hypothetical commited on
Commit
7766b8e
·
verified ·
1 Parent(s): bb38d6d

Create README.md (#1)

Browse files

- Create README.md (788cb59fa826d566a27f7d71903b0cf2e32903bd)

Files changed (1) hide show
  1. README.md +131 -0
README.md ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model:
4
+ - black-forest-labs/FLUX.1-dev
5
+ base_model_relation: quantized
6
+ ---
7
+
8
+ # Elastic model: Fastest self-serving models. FLUX.1-schnell.
9
+
10
+ Elastic models are the models produced by TheStage AI ANNA: Automated Neural Networks Accelerator. ANNA allows you to control model size, latency and quality with a simple slider movement. For each model, ANNA produces a series of optimized models:
11
+
12
+ * __XL__: Mathematically equivalent neural network, optimized with our DNN compiler.
13
+
14
+ * __L__: Near lossless model, with less than 1% degradation obtained on corresponding benchmarks.
15
+
16
+ * __M__: Faster model, with accuracy degradation less than 1.5%.
17
+
18
+ * __S__: The fastest model, with accuracy degradation less than 2%.
19
+
20
+
21
+ __Goals of Elastic Models:__
22
+
23
+ * Provide the fastest models and service for self-hosting.
24
+ * Provide flexibility in cost vs quality selection for inference.
25
+ * Provide clear quality and latency benchmarks.
26
+ * Provide interface of HF libraries: transformers and diffusers with a single line of code.
27
+ * Provide models supported on a wide range of hardware, which are pre-compiled and require no JIT.
28
+
29
+ > It's important to note that specific quality degradation can vary from model to model. For instance, with an S model, you can have 0.5% degradation as well.
30
+
31
+ -----
32
+
33
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6487003ecd55eec571d14f96/ouz3FYQzG8C7Fl3XpNe6t.jpeg)
34
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6487003ecd55eec571d14f96/l8xFGy0p5rxsn1-UojolK.png)
35
+
36
+ ## Inference
37
+
38
+ Currently, our demo model only supports 1024x1024 outputs without batching. This will be updated in the near future.
39
+ To infer our models, you just need to replace `diffusers` import with `elastic_models.diffusers`:
40
+
41
+ ```python
42
+ import torch
43
+ from elastic_models.diffusers import FluxPipeline
44
+
45
+ mode_name = 'black-forest-labs/FLUX.1-dev'
46
+ hf_token = ''
47
+ device = torch.device("cuda")
48
+
49
+ pipeline = FluxPipeline.from_pretrained(
50
+ mode_name,
51
+ torch_dtype=torch.bfloat16,
52
+ token=hf_token
53
+ mode='S'
54
+ )
55
+ pipeline.to(device)
56
+
57
+ prompts = ["Kitten eating a banana"]
58
+ output = pipeline(prompt=prompts)
59
+
60
+ for prompt, output_image in zip(prompts, output.images):
61
+ output_image.save((prompt.replace(' ', '_') + '.png'))
62
+ ```
63
+
64
+ ### Installation
65
+
66
+
67
+ __System requirements:__
68
+ * GPUs: H100
69
+ * CPU: AMD, Intel
70
+ * Python: 3.10-3.12
71
+
72
+
73
+ To work with our models just run these lines in your terminal:
74
+
75
+ ```shell
76
+ pip install thestage
77
+ pip install elastic_models==0.0.3\
78
+ --index-url https://thestage.jfrog.io/artifactory/api/pypi/pypi-thestage-ai-production/simple\
79
+ --extra-index-url https://pypi.nvidia.com\
80
+ --extra-index-url https://pypi.org/simple
81
+
82
+ pip install flash_attn==2.7.3 --no-build-isolation
83
+ pip uninstall apex
84
+ echo "{
85
+ "meta-llama/Llama-3.2-1B-Instruct": 6,
86
+ "mistralai/Mistral-7B-Instruct-v0.3": 7,
87
+ "black-forest-labs/FLUX.1-schnell": 1,
88
+ "black-forest-labs/FLUX.1-dev": 5
89
+ }" > model_name_id.json
90
+ export ELASTIC_MODEL_ID_MAPPING=./model_name_id.json
91
+ ```
92
+
93
+ Then go to [app.thestage.ai](https://app.thestage.ai), login and generate API token from your profile page. Set up API token as follows:
94
+
95
+ ```shell
96
+ thestage config set --api-token <YOUR_API_TOKEN>
97
+ ```
98
+
99
+ Congrats, now you can use accelerated models!
100
+
101
+ ----
102
+
103
+ ## Benchmarks
104
+
105
+ Benchmarking is one of the most important procedures during model acceleration. We aim to provide clear performance metrics for models using our algorithms.
106
+
107
+ ### Quality benchmarks
108
+
109
+ For quality evaluation we have used: PSNR, SSIM and CLIP score. PSNR and SSIM were computed using outputs of original model.
110
+ | Metric/Model | S | M | L | XL | Original |
111
+ |---------------|---|---|---|----|----------|
112
+ | PSNR | 29.9 | 30.2 | 31 | inf | inf |
113
+ | SSIM | 0.66 | 0.71 | 0.86 | 1.0 | 1.0 |
114
+ | CLIP | 11.5 | 11.6 | 11.8 | 11.9 | 11.9|
115
+
116
+
117
+ ### Latency benchmarks
118
+
119
+ Time in seconds to generate one image 1024x1024
120
+ | GPU/Model | S | M | L | XL | Original |
121
+ |-----------|-----|---|---|----|----------|
122
+ | H100 | 0.5 | 0.58 | 0.65 | 0.75 | 1.05 |
123
+ | L40s | 1.4 | 1.6 | 1.9 | 2.1 | 2.5|
124
+
125
+
126
+ ## Links
127
+
128
+ * __Platform__: [app.thestage.ai](https://app.thestage.ai)
129
+ <!-- * __Elastic models Github__: [app.thestage.ai](app.thestage.ai) -->
130
+ * __Subscribe for updates__: [TheStageAI X](https://x.com/TheStageAI)
131
+ * __Contact email__: [email protected]