Update README.md
Browse files
README.md
CHANGED
|
@@ -49,7 +49,9 @@ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization metho
|
|
| 49 |
|
| 50 |
These are experimental first AWQs for the brand-new model format, Mistral.
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
| 53 |
|
| 54 |
<!-- description end -->
|
| 55 |
<!-- repositories-available start -->
|
|
@@ -84,6 +86,43 @@ Models are released as sharded safetensors files.
|
|
| 84 |
|
| 85 |
<!-- README_AWQ.md-provided-files end -->
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
<!-- README_AWQ.md-use-from-python start -->
|
| 89 |
## How to use this AWQ model from Python code
|
|
|
|
| 49 |
|
| 50 |
These are experimental first AWQs for the brand-new model format, Mistral.
|
| 51 |
|
| 52 |
+
As of September 29th 2023, they are supported by AutoAWQ, and vLLM (version 0.2).
|
| 53 |
+
|
| 54 |
+
To use from AutoAWQ requires installing both AutoAWQ and Transformers from Github. More details are below.
|
| 55 |
|
| 56 |
<!-- description end -->
|
| 57 |
<!-- repositories-available start -->
|
|
|
|
| 86 |
|
| 87 |
<!-- README_AWQ.md-provided-files end -->
|
| 88 |
|
| 89 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
| 90 |
+
## Serving this model from vLLM
|
| 91 |
+
|
| 92 |
+
Make sure you are using vLLM version 0.2.
|
| 93 |
+
|
| 94 |
+
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
|
| 95 |
+
|
| 96 |
+
- When using vLLM as a server, pass the `--quantization awq` parameter, for example:
|
| 97 |
+
|
| 98 |
+
```shell
|
| 99 |
+
python3 python -m vllm.entrypoints.api_server --model TheBloke/Mistral-7B-v0.1-AWQ --quantization awq --dtype float16
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
|
| 103 |
+
|
| 104 |
+
```python
|
| 105 |
+
from vllm import LLM, SamplingParams
|
| 106 |
+
|
| 107 |
+
prompts = [
|
| 108 |
+
"Hello, my name is",
|
| 109 |
+
"The president of the United States is",
|
| 110 |
+
"The capital of France is",
|
| 111 |
+
"The future of AI is",
|
| 112 |
+
]
|
| 113 |
+
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
| 114 |
+
|
| 115 |
+
llm = LLM(model="TheBloke/Mistral-7B-v0.1-AWQ", quantization="awq", dtype="float16")
|
| 116 |
+
|
| 117 |
+
outputs = llm.generate(prompts, sampling_params)
|
| 118 |
+
|
| 119 |
+
# Print the outputs.
|
| 120 |
+
for output in outputs:
|
| 121 |
+
prompt = output.prompt
|
| 122 |
+
generated_text = output.outputs[0].text
|
| 123 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
| 124 |
+
```
|
| 125 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
| 126 |
|
| 127 |
<!-- README_AWQ.md-use-from-python start -->
|
| 128 |
## How to use this AWQ model from Python code
|