Update handler.py
Browse files- handler.py +23 -13
handler.py
CHANGED
@@ -9,43 +9,53 @@ class EndpointHandler:
|
|
9 |
def __init__(self, path: str = ""):
|
10 |
print("🚀 Initializing Flux Kontext pipeline...")
|
11 |
|
12 |
-
# Load Flux Kontext model
|
13 |
self.pipe = FluxKontextPipeline.from_pretrained(
|
14 |
-
"black-forest-labs/FLUX.1-Kontext-dev",
|
15 |
torch_dtype=torch.float16,
|
16 |
)
|
17 |
self.pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
print("✅ Model ready.")
|
19 |
|
20 |
def __call__(self, data: Dict) -> Dict:
|
21 |
-
print("🔧 Received data:", data)
|
|
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
if not prompt:
|
32 |
-
return {"error": "'prompt'
|
33 |
if not image_input:
|
34 |
-
return {"error": "'image' (base64
|
35 |
|
36 |
# Decode image from base64
|
37 |
try:
|
38 |
image_bytes = base64.b64decode(image_input)
|
39 |
image = Image.open(BytesIO(image_bytes)).convert("RGB")
|
40 |
except Exception as e:
|
41 |
-
return {"error": f"Failed to decode 'image'
|
42 |
|
43 |
# Generate edited image with Kontext
|
44 |
try:
|
45 |
output = self.pipe(
|
46 |
prompt=prompt,
|
47 |
image=image,
|
48 |
-
num_inference_steps=28,
|
49 |
guidance_scale=3.5
|
50 |
).images[0]
|
51 |
print("🎨 Image generated.")
|
|
|
9 |
def __init__(self, path: str = ""):
|
10 |
print("🚀 Initializing Flux Kontext pipeline...")
|
11 |
|
12 |
+
# Load Flux Kontext model
|
13 |
self.pipe = FluxKontextPipeline.from_pretrained(
|
14 |
+
"black-forest-labs/FLUX.1-Kontext-dev",
|
15 |
torch_dtype=torch.float16,
|
16 |
)
|
17 |
self.pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
print("✅ Model ready.")
|
19 |
|
20 |
def __call__(self, data: Dict) -> Dict:
|
21 |
+
print("🔧 Received raw data type:", type(data))
|
22 |
+
print("🔧 Received raw data content:", data)
|
23 |
|
24 |
+
# Defensive parsing
|
25 |
+
if isinstance(data, dict):
|
26 |
+
# Some endpoints send data directly as prompt/image dict
|
27 |
+
prompt = data.get("prompt")
|
28 |
+
image_input = data.get("image")
|
29 |
|
30 |
+
# If 'inputs' key is used (as per HF Inference default schema)
|
31 |
+
if prompt is None and image_input is None:
|
32 |
+
inputs = data.get("inputs")
|
33 |
+
if isinstance(inputs, dict):
|
34 |
+
prompt = inputs.get("prompt")
|
35 |
+
image_input = inputs.get("image")
|
36 |
+
else:
|
37 |
+
return {"error": "Expected 'inputs' to be a JSON object containing 'prompt' and 'image'."}
|
38 |
+
else:
|
39 |
+
return {"error": "Input payload must be a JSON object."}
|
40 |
|
41 |
if not prompt:
|
42 |
+
return {"error": "Missing 'prompt' in input data."}
|
43 |
if not image_input:
|
44 |
+
return {"error": "Missing 'image' (base64) in input data."}
|
45 |
|
46 |
# Decode image from base64
|
47 |
try:
|
48 |
image_bytes = base64.b64decode(image_input)
|
49 |
image = Image.open(BytesIO(image_bytes)).convert("RGB")
|
50 |
except Exception as e:
|
51 |
+
return {"error": f"Failed to decode 'image' as base64 PNG: {str(e)}"}
|
52 |
|
53 |
# Generate edited image with Kontext
|
54 |
try:
|
55 |
output = self.pipe(
|
56 |
prompt=prompt,
|
57 |
image=image,
|
58 |
+
num_inference_steps=28,
|
59 |
guidance_scale=3.5
|
60 |
).images[0]
|
61 |
print("🎨 Image generated.")
|