Create handler.py
Browse files- handler.py +50 -0
handler.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
import torch
|
3 |
+
from diffusers import FluxKontextPipeline
|
4 |
+
from io import BytesIO
|
5 |
+
import base64
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
class EndpointHandler:
|
9 |
+
def __init__(self, path: str = ""):
|
10 |
+
print("🚀 Initializing Flux Kontext pipeline...")
|
11 |
+
|
12 |
+
# Load Flux Kontext model from Hugging Face Hub
|
13 |
+
self.pipe = FluxKontextPipeline.from_pretrained(
|
14 |
+
"black-forest-labs/FLUX.1-Kontext-dev", # replace with your specific Kontext model if different
|
15 |
+
torch_dtype=torch.float16,
|
16 |
+
)
|
17 |
+
self.pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
print("✅ Model ready.")
|
19 |
+
|
20 |
+
def __call__(self, data: Dict) -> Dict:
|
21 |
+
print("🔧 Received data:", data)
|
22 |
+
|
23 |
+
inputs = data.get("inputs", {})
|
24 |
+
prompt = inputs.get("prompt")
|
25 |
+
image_base64 = inputs.get("image")
|
26 |
+
|
27 |
+
if not prompt or not image_base64:
|
28 |
+
return {"error": "Both 'prompt' and 'image' inputs are required."}
|
29 |
+
|
30 |
+
# Decode input image from base64
|
31 |
+
image_bytes = base64.b64decode(image_base64)
|
32 |
+
image = Image.open(BytesIO(image_bytes)).convert("RGB")
|
33 |
+
|
34 |
+
# Generate edited image with Kontext
|
35 |
+
output = self.pipe(
|
36 |
+
prompt=prompt,
|
37 |
+
image=image,
|
38 |
+
num_inference_steps=28, # context standard
|
39 |
+
guidance_scale=3.5
|
40 |
+
).images[0]
|
41 |
+
|
42 |
+
print("🎨 Image generated.")
|
43 |
+
|
44 |
+
# Encode output image to base64
|
45 |
+
buffer = BytesIO()
|
46 |
+
output.save(buffer, format="PNG")
|
47 |
+
base64_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
48 |
+
|
49 |
+
print("✅ Returning image.")
|
50 |
+
return {"image": base64_image}
|