Update README.md
Browse files
README.md
CHANGED
|
@@ -41,7 +41,11 @@ Addressing the efficay of Quantization and PEFT. Implemented as a personal Proje
|
|
| 41 |
|
| 42 |
### How to use
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
```python
|
| 47 |
instruction = """model_input = "Help me set up my daily to-do list!""""
|
|
@@ -73,20 +77,15 @@ print(code)
|
|
| 73 |
|
| 74 |
HuggingFace Accelerate with Training Loop.
|
| 75 |
|
| 76 |
-
#### Preprocessing
|
| 77 |
-
|
| 78 |
-
- ***Encoder Input:*** "sql_prompt: " + data['sql_prompt']+" sql_context: "+data['sql_context']
|
| 79 |
-
- ***Decoder Input:*** data['sql']
|
| 80 |
-
|
| 81 |
|
| 82 |
#### Training Hyperparameters
|
| 83 |
|
| 84 |
- **Optimizer:** AdamW
|
| 85 |
- **lr:** 2e-5
|
| 86 |
- **decay:** linear
|
| 87 |
-
- **
|
| 88 |
-
- **
|
| 89 |
-
- **
|
| 90 |
|
| 91 |
|
| 92 |
#### Hardware
|
|
@@ -94,51 +93,18 @@ HuggingFace Accelerate with Training Loop.
|
|
| 94 |
- **GPU:** P100
|
| 95 |
|
| 96 |
|
| 97 |
-
### Citing Dataset and BaseModel
|
| 98 |
-
|
| 99 |
-
```
|
| 100 |
-
@software{gretel-synthetic-text-to-sql-2024,
|
| 101 |
-
author = {Meyer, Yev and Emadi, Marjan and Nathawani, Dhruv and Ramaswamy, Lipika and Boyd, Kendrick and Van Segbroeck, Maarten and Grossman, Matthew and Mlocek, Piotr and Newberry, Drew},
|
| 102 |
-
title = {{Synthetic-Text-To-SQL}: A synthetic dataset for training language models to generate SQL queries from natural language prompts},
|
| 103 |
-
month = {April},
|
| 104 |
-
year = {2024},
|
| 105 |
-
url = {https://huggingface.co/datasets/gretelai/synthetic-text-to-sql}
|
| 106 |
-
}
|
| 107 |
-
```
|
| 108 |
-
|
| 109 |
-
```
|
| 110 |
-
@article{DBLP:journals/corr/abs-1910-13461,
|
| 111 |
-
author = {Mike Lewis and
|
| 112 |
-
Yinhan Liu and
|
| 113 |
-
Naman Goyal and
|
| 114 |
-
Marjan Ghazvininejad and
|
| 115 |
-
Abdelrahman Mohamed and
|
| 116 |
-
Omer Levy and
|
| 117 |
-
Veselin Stoyanov and
|
| 118 |
-
Luke Zettlemoyer},
|
| 119 |
-
title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language
|
| 120 |
-
Generation, Translation, and Comprehension},
|
| 121 |
-
journal = {CoRR},
|
| 122 |
-
volume = {abs/1910.13461},
|
| 123 |
-
year = {2019},
|
| 124 |
-
url = {http://arxiv.org/abs/1910.13461},
|
| 125 |
-
eprinttype = {arXiv},
|
| 126 |
-
eprint = {1910.13461},
|
| 127 |
-
timestamp = {Thu, 31 Oct 2019 14:02:26 +0100},
|
| 128 |
-
biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib},
|
| 129 |
-
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 130 |
-
}
|
| 131 |
-
|
| 132 |
-
```
|
| 133 |
-
|
| 134 |
## Additional Information
|
| 135 |
|
| 136 |
-
- ***Github:*** [Repository](
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
## Acknowledgment
|
| 139 |
|
| 140 |
-
Thanks to [@
|
| 141 |
-
Thanks to [@
|
| 142 |
|
| 143 |
|
| 144 |
## Model Card Authors
|
|
|
|
| 41 |
|
| 42 |
### How to use
|
| 43 |
|
| 44 |
+
```
|
| 45 |
+
The quantized model is finetuned as PEFT. We have the trained Adapter.
|
| 46 |
+
Merging LoRA adapated with GPTQ quantized model is not yet supported.
|
| 47 |
+
So instead of loading a single finetuned model, we need to load the mase model and merge the finetuned adapter on top.
|
| 48 |
+
```
|
| 49 |
|
| 50 |
```python
|
| 51 |
instruction = """model_input = "Help me set up my daily to-do list!""""
|
|
|
|
| 77 |
|
| 78 |
HuggingFace Accelerate with Training Loop.
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
#### Training Hyperparameters
|
| 82 |
|
| 83 |
- **Optimizer:** AdamW
|
| 84 |
- **lr:** 2e-5
|
| 85 |
- **decay:** linear
|
| 86 |
+
- **batch_size:** 4
|
| 87 |
+
- **gradient_accumulation_steps:** 8
|
| 88 |
+
- **global_step:** 625
|
| 89 |
|
| 90 |
|
| 91 |
#### Hardware
|
|
|
|
| 93 |
- **GPU:** P100
|
| 94 |
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
## Additional Information
|
| 97 |
|
| 98 |
+
- ***Github:*** [Repository]()
|
| 99 |
+
- ***Intro to quantization:*** [Blog](https://huggingface.co/blog/merve/quantization)
|
| 100 |
+
- ***Emergent Feature:*** [Academic](https://timdettmers.com/2022/08/17/llm-int8-and-emergent-features)
|
| 101 |
+
- ***GPTQ Paper:*** [GPTQ](https://arxiv.org/pdf/2210.17323)
|
| 102 |
+
- ***BITSANDBYTES and further*** [LLM.int8()](https://arxiv.org/pdf/2208.07339)
|
| 103 |
|
| 104 |
## Acknowledgment
|
| 105 |
|
| 106 |
+
Thanks to [@AMerve Noyan](https://huggingface.co/blog/merve/quantization) for precise intro.
|
| 107 |
+
Thanks to [@HuggungFace Team](https://colab.research.google.com/drive/1_TIrmuKOFhuRRiTWN94iLKUFu6ZX4ceb?usp=sharing#scrollTo=vT0XjNc2jYKy) for coding guide on gptq.
|
| 108 |
|
| 109 |
|
| 110 |
## Model Card Authors
|