Create inference.py
Browse files- inference.py +59 -0
inference.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
# Load model and tokenizer
|
| 5 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
| 6 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
| 7 |
+
|
| 8 |
+
# Define gender predictions for specific characters
|
| 9 |
+
character_gender_mapping = {
|
| 10 |
+
"NARRATOR": "neutral",
|
| 11 |
+
"FATHER": "male",
|
| 12 |
+
"HARPER": "female"
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
def predict_gender_aggregated(character, lines):
|
| 16 |
+
# Check if the character is in the mapping
|
| 17 |
+
if character.upper() in character_gender_mapping:
|
| 18 |
+
return character_gender_mapping[character.upper()]
|
| 19 |
+
|
| 20 |
+
# For other characters, perform gender prediction as before
|
| 21 |
+
aggregated_text = " ".join(lines)
|
| 22 |
+
input_text = f"Character: {character}. Dialogue: {aggregated_text}. Gender:"
|
| 23 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
| 24 |
+
|
| 25 |
+
# Create an attention mask
|
| 26 |
+
attention_mask = torch.ones(input_ids.shape)
|
| 27 |
+
|
| 28 |
+
output = model.generate(input_ids, attention_mask=attention_mask, max_length=60, do_sample=True, temperature=0.7)
|
| 29 |
+
result = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 30 |
+
|
| 31 |
+
# Extract gender prediction as 'male' or 'female' (assuming it's one of these two)
|
| 32 |
+
if 'male' in result.lower():
|
| 33 |
+
gender_prediction = 'male'
|
| 34 |
+
elif 'female' in result.lower():
|
| 35 |
+
gender_prediction = 'female'
|
| 36 |
+
else:
|
| 37 |
+
gender_prediction = 'unknown' # Handle cases where gender isn't explicitly mentioned
|
| 38 |
+
|
| 39 |
+
return gender_prediction
|
| 40 |
+
|
| 41 |
+
# This function will be called for inference
|
| 42 |
+
def predict(input_data):
|
| 43 |
+
character = input_data.get("character")
|
| 44 |
+
lines = input_data.get("lines")
|
| 45 |
+
|
| 46 |
+
# Error handling for missing input
|
| 47 |
+
if not character or not lines:
|
| 48 |
+
return {"error": "Missing character or lines in the input"}
|
| 49 |
+
|
| 50 |
+
gender_prediction = predict_gender_aggregated(character, lines)
|
| 51 |
+
return {"character": character, "predicted_gender": gender_prediction}
|
| 52 |
+
|
| 53 |
+
# Example input format for testing locally
|
| 54 |
+
if __name__ == "__main__":
|
| 55 |
+
test_input = {
|
| 56 |
+
"character": "FATHER",
|
| 57 |
+
"lines": ["I am very proud of you, son."]
|
| 58 |
+
}
|
| 59 |
+
print(predict(test_input))
|