Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- fka/awesome-chatgpt-prompts
|
5 |
+
language:
|
6 |
+
- ak
|
7 |
+
metrics:
|
8 |
+
- cer
|
9 |
+
base_model:
|
10 |
+
- Qwen/Qwen2-VL-7B-Instruct
|
11 |
+
new_version: mattshumer/Reflection-Llama-3.1-70B
|
12 |
+
pipeline_tag: text2text-generation
|
13 |
+
library_name: bertopic
|
14 |
+
tags:
|
15 |
+
- code
|
16 |
+
---
|
17 |
+
import gradio as gr
|
18 |
+
from transformers import pipeline, GPT2Tokenizer, GPT2LMHeadModel
|
19 |
+
import torch
|
20 |
+
from datetime import datetime
|
21 |
+
|
22 |
+
# Laad GPT-2 model en tokenizer voor meer controle
|
23 |
+
model_name = "gpt2"
|
24 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
25 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
26 |
+
|
27 |
+
# Zet het model in evaluatie-modus
|
28 |
+
model.eval()
|
29 |
+
|
30 |
+
# Functie om de tokenslimiet in de gaten te houden
|
31 |
+
def manage_token_limit(history, max_tokens=1000):
|
32 |
+
# Check of de geschiedenis te groot wordt
|
33 |
+
tokenized_history = tokenizer.encode(history)
|
34 |
+
if len(tokenized_history) > max_tokens:
|
35 |
+
# Trim de geschiedenis
|
36 |
+
return tokenizer.decode(tokenized_history[-max_tokens:])
|
37 |
+
else:
|
38 |
+
return history
|
39 |
+
|
40 |
+
# Functie om AI-respons te genereren met context
|
41 |
+
def generate_response(user_input, chat_history, temperature=0.7, top_k=50, top_p=0.9, max_length=100):
|
42 |
+
# Voeg user input toe aan de geschiedenis
|
43 |
+
new_history = chat_history + f"\nUser: {user_input}\nAI:"
|
44 |
+
|
45 |
+
# Trim de geschiedenis als die te lang is
|
46 |
+
new_history = manage_token_limit(new_history)
|
47 |
+
|
48 |
+
# Tokeniseer de geschiedenis
|
49 |
+
inputs = tokenizer.encode(new_history, return_tensors='pt')
|
50 |
+
|
51 |
+
# Genereer tekst met variatie in temperatuur en top-k sampling
|
52 |
+
outputs = model.generate(inputs, max_length=max_length, temperature=temperature,
|
53 |
+
top_k=top_k, top_p=top_p, pad_token_id=tokenizer.eos_token_id)
|
54 |
+
|
55 |
+
# Decodeer de output en voeg deze toe aan de geschiedenis
|
56 |
+
generated_text = tokenizer.decode(outputs[:, inputs.shape[-1]:][0], skip_special_tokens=True)
|
57 |
+
|
58 |
+
new_history += generated_text + "\n"
|
59 |
+
|
60 |
+
return generated_text, new_history
|
61 |
+
|
62 |
+
# Functie voor het loggen van conversaties
|
63 |
+
def log_conversation(user_input, response):
|
64 |
+
# Simpele logging naar een bestand
|
65 |
+
with open("chat_logs.txt", "a") as log_file:
|
66 |
+
log_file.write(f"{datetime.now()} | User: {user_input} | AI: {response}\n")
|
67 |
+
|
68 |
+
# Gradio interface-functie die interactie en instellingen beheert
|
69 |
+
def chatbot_interface(user_input, chat_history, temperature=0.7, top_k=50, top_p=0.9):
|
70 |
+
# Genereer AI-reactie
|
71 |
+
ai_response, updated_history = generate_response(user_input, chat_history, temperature, top_k, top_p)
|
72 |
+
|
73 |
+
# Log de conversatie
|
74 |
+
log_conversation(user_input, ai_response)
|
75 |
+
|
76 |
+
return ai_response, updated_history
|
77 |
+
|
78 |
+
# Gradio UI setup
|
79 |
+
with gr.Blocks() as demo:
|
80 |
+
# Titel en beschrijving
|
81 |
+
gr.Markdown("# Geavanceerde AI Chatbot met Variatie")
|
82 |
+
gr.Markdown("Deze chatbot gebruikt GPT-2 om geavanceerde, variabele antwoorden te genereren.")
|
83 |
+
|
84 |
+
# Input veld en conversatiegeschiedenis
|
85 |
+
chat_history = gr.State(value="") # Houdt de volledige geschiedenis bij
|
86 |
+
|
87 |
+
with gr.Row():
|
88 |
+
user_input = gr.Textbox(lines=2, placeholder="Typ hier je vraag...")
|
89 |
+
|
90 |
+
# Instellingen voor AI variatie
|
91 |
+
with gr.Row():
|
92 |
+
temperature = gr.Slider(0.1, 1.0, value=0.7, label="Temperature (Creativiteit)")
|
93 |
+
top_k = gr.Slider(1, 100, value=50, label="Top-k Sampling")
|
94 |
+
top_p = gr.Slider(0.1, 1.0, value=0.9, label="Top-p Sampling")
|
95 |
+
|
96 |
+
# Output veld voor het AI antwoord
|
97 |
+
ai_output = gr.Textbox(label="AI Response")
|
98 |
+
|
99 |
+
# Start de chatbot
|
100 |
+
submit_button = gr.Button("Submit")
|
101 |
+
submit_button.click(chatbot_interface,
|
102 |
+
inputs=[user_input, chat_history, temperature, top_k, top_p],
|
103 |
+
outputs=[ai_output, chat_history])
|
104 |
+
|
105 |
+
# Reset knop
|
106 |
+
reset_button = gr.Button("Reset Chat")
|
107 |
+
reset_button.click(lambda: "", outputs=chat_history)
|
108 |
+
|
109 |
+
# Start de Gradio interface
|
110 |
+
demo.launch()
|