File size: 14,177 Bytes
42935f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
"""
Contains an implementation of the U-Net architecture.
U-Net paper by Ronneberger et al. (2015): https://arxiv.org/abs/1505.04597
This implementation is based on the original U-Net architecture, with options for
normalization (batch normalization or layer normalization), bilinear upsampling,
and padding in the convolution layers.
Author: Ole-Christian Galbo Engstrøm
E-mail: [email protected]
"""
from typing import Iterable
import torch
from torch import nn
from torch.nn import functional as F
def conv3x3(in_channels: int, out_channels: int, bias: bool, pad: bool) -> nn.Conv2d:
"""
Applies a convolution with a 3x3 kernel.
"""
if pad:
padding = 1
else:
padding = "valid"
layer = nn.Conv2d(
in_channels,
out_channels,
kernel_size=3,
padding=padding,
bias=bias,
)
return layer
def conv_block(
in_channels: int,
out_channels: int,
non_linearity: nn.Module,
normalization: None | str,
bias: bool,
pad: bool,
) -> nn.Sequential:
"""
A block of two convolutional layers, each followed by a non-linearity
and optionally a normalization layer.
In the U-Net architecture illustration in the U-Net paper,
this corresponds to two blue arrows.
"""
layers = []
for _ in range(2):
layers.append(
conv3x3(
in_channels=in_channels, out_channels=out_channels, bias=bias, pad=pad
)
)
layers.append(non_linearity)
layers.append(
get_norm_layer(normalization=normalization, in_channels=out_channels)
)
in_channels = out_channels
return nn.Sequential(*layers)
def batch_norm(in_channels: int) -> nn.Sequential:
"""
Apply Batch Normalization over the channel dimension.
Batch Normalization paper by Ioffe and Szegedy (2015): https://arxiv.org/abs/1502.03167
"""
return nn.BatchNorm2d(in_channels, momentum=0.01)
class Permute(nn.Module):
"""
Permute the dimensions of a tensor.
"""
def __init__(self, dims: Iterable[int]):
super().__init__()
self.dims = dims
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x.permute(self.dims)
def __repr__(self):
return f'{self.__class__.__name__}({", ".join(map(str, self.dims))})'
def layer_norm(in_channels: int) -> nn.Sequential:
"""
Apply Layer Normalization over the channel dimension.
Layer Normalization paper by Ba et al. (2016): https://arxiv.org/abs/1607.06450
"""
layers = [
# (B, C, H, W) -> (B, H, W, C)
Permute((0, 2, 3, 1)),
# LayerNorm expects the last dimension to be the feature dimension
# (we want the normalized shape to be (C,))
nn.LayerNorm(in_channels),
# (B, H, W, C) -> (B, C, H, W)
Permute((0, 3, 1, 2)),
]
return nn.Sequential(*layers)
def get_norm_layer(normalization: None | str, in_channels: int) -> nn.Module:
"""
Get the normalization layer based on the specified type.
Either 'bn' for batch normalization, 'ln' for layer normalization,
or None for no normalization layer.
"""
if normalization == "bn":
return batch_norm(in_channels)
if normalization == "ln":
return layer_norm(in_channels)
return nn.Identity()
def copy_and_crop(large: torch.Tensor, small: torch.Tensor) -> torch.Tensor:
"""
Implementation of a copy-and-crop block in the U-Net architecture.
Copy the large image and crop it to the size of the small image.
The large image is cropped in the middle, and then the two images are
concatenated along the channel dimension.
In the U-Net architecture illustration in the U-Net paper,
this corresponds to a gray arrow.
"""
large_height, large_width = large.shape[-2:]
small_height, small_width = small.shape[-2:]
start_x = (large_height - small_height) // 2
start_y = (large_width - small_width) // 2
cropped_large = large[
..., start_x : start_x + small_height, start_y : start_y + small_width
]
return torch.cat([cropped_large, small], dim=-3)
class ContractionBlock(nn.Module):
"""
Implementation of a contraction block in the U-Net architecture.
This block consists of a max pooling layer followed by a convolution block.
In the U-Net architecture illustration in the U-Net paper, this corresponds to
one red arrow followed by the subsequent two blue arrows.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
non_linearity: nn.Module,
nonormalization: None | str,
bias: bool,
pad: bool,
):
super().__init__()
self.max_pool = self._max_pool()
self.conv_block = conv_block(
in_channels=in_channels,
out_channels=out_channels,
non_linearity=non_linearity,
normalization=nonormalization,
bias=bias,
pad=pad,
)
def _max_pool(self) -> nn.MaxPool2d:
layer = nn.MaxPool2d(kernel_size=2, stride=2)
return layer
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.max_pool(x)
x = self.conv_block(x)
return x
class Upsample(nn.Module):
"""
Implementation of an upsampling block in the U-Net architecture.
This block consists of either a transposed convolution or bilinear upsampling,
followed by a convolution block.
In the U-Net architecture illustration in the U-Net paper, this corresponds to
one green arrow.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
non_linearity,
normalization: None | str,
bias: bool,
bilinear: bool,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.non_linearity = non_linearity
self.normalization = normalization
self.bias = bias
self.bilinear = bilinear
self.up = self._upsample(in_channels, out_channels)
def _upsample(self, in_channels: int, out_channels: int) -> nn.Sequential:
if self.bilinear:
up = self._up_bilinear(in_channels, out_channels)
else:
up = self._up_trans_conv2x2(in_channels, out_channels)
return up
def _up_trans_conv2x2(self, in_channels: int, out_channels: int) -> nn.Sequential:
layers = [
nn.ConvTranspose2d(
in_channels, out_channels, kernel_size=2, stride=2, bias=self.bias
),
self.non_linearity,
]
layers.append(get_norm_layer(self.normalization, out_channels))
return nn.Sequential(*layers)
def _up_bilinear(self, in_channels: int, out_channels: int) -> nn.Sequential:
layers = [
nn.Upsample(mode="bilinear", scale_factor=2, align_corners=True),
nn.Conv2d(
in_channels=in_channels, out_channels=out_channels, kernel_size=1
),
self.non_linearity,
]
layers.append(get_norm_layer(self.normalization, out_channels))
return nn.Sequential(*layers)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.up(x)
class ExpansionBlock(nn.Module):
"""
Implementation of an expansion block in the U-Net architecture.
This block consists of an upsampling block followed by a copy-and-crop block and
a convolution block.
In the U-Net architecture illustration in the U-Net paper, this corresponds to
one green arrow followed by a gray arrow and then two blue arrows.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
non_linearity: nn.Module,
normalization: None | str,
bias: bool,
bilinear: bool,
pad: bool,
):
super().__init__()
self.pad = pad
self.upsample = Upsample(
in_channels=in_channels,
out_channels=out_channels,
non_linearity=non_linearity,
normalization=normalization,
bias=bias,
bilinear=bilinear,
)
self.conv_block = self.conv_block = conv_block(
in_channels=in_channels,
out_channels=out_channels,
non_linearity=non_linearity,
normalization=normalization,
bias=bias,
pad=pad,
)
def forward(self, large: torch.Tensor, small: torch.Tensor) -> torch.Tensor:
x = self.upsample(small)
if self.pad:
diff_h = large.shape[-2] - x.shape[-2]
diff_w = large.shape[-1] - x.shape[-1]
pad_left = diff_w // 2
pad_right = diff_w - pad_left
pad_top = diff_h // 2
pad_bottom = diff_h - pad_top
x = F.pad(
x,
(pad_left, pad_right, pad_top, pad_bottom),
mode="constant",
value=0.0,
)
x = copy_and_crop(large, x)
x = self.conv_block(x)
return x
class UNet(nn.Module):
"""
in_channels : int\\
Number of input channels.
out_channels : int\\
Number of output channels
pad : bool, default=True\\
If True use padding in the convolution layers, preserving the input size.
If False, the output size will be reduced compared to the input size.
bilinear : bool, default=True\\
If True use bilinear upsampling.
If False use transposed convolution.
normalization: None | str, default=None\\
If None use no normalization.
If 'bn' use batch normalization.
If 'ln' use layer normalization.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
pad: bool = True,
bilinear: bool = True,
normalization: None | str = None,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.pad = pad
self.bilinear = bilinear
self.normalization = normalization
if self.normalization not in [None, "bn", "ln"]:
raise ValueError(
"Normalization must be None, 'bn' for batch normalization,"
"or 'ln' for layer normalization"
)
# Whether to use bias in the convolution layers
# If normalization is used, bias is already included in the normalization layer
self.bias_conv = normalization is None
self.non_linearity = nn.ReLU(inplace=True)
self.intermediate_channels = [64 * 2**i for i in range(5)]
self.first_convs = conv_block(
in_channels=in_channels,
out_channels=self.intermediate_channels[0],
non_linearity=self.non_linearity,
normalization=self.normalization,
bias=self.bias_conv,
pad=self.pad,
)
self.last_conv = nn.Conv2d(
self.intermediate_channels[0], out_channels, kernel_size=1
)
self.contraction1 = self._get_contraction_block(
in_channels=self.intermediate_channels[0],
out_channels=self.intermediate_channels[1],
)
self.contraction2 = self._get_contraction_block(
in_channels=self.intermediate_channels[1],
out_channels=self.intermediate_channels[2],
)
self.contraction3 = self._get_contraction_block(
in_channels=self.intermediate_channels[2],
out_channels=self.intermediate_channels[3],
)
self.contraction4 = self._get_contraction_block(
in_channels=self.intermediate_channels[3],
out_channels=self.intermediate_channels[4],
)
self.expansion4 = self._get_expansion_block(
in_channels=self.intermediate_channels[4],
out_channels=self.intermediate_channels[3],
)
self.expansion3 = self._get_expansion_block(
in_channels=self.intermediate_channels[3],
out_channels=self.intermediate_channels[2],
)
self.expansion2 = self._get_expansion_block(
in_channels=self.intermediate_channels[2],
out_channels=self.intermediate_channels[1],
)
self.expansion1 = self._get_expansion_block(
in_channels=self.intermediate_channels[1],
out_channels=self.intermediate_channels[0],
)
# Init weights
for m in self.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.BatchNorm2d, nn.LayerNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _get_contraction_block(
self, in_channels: int, out_channels: int
) -> ContractionBlock:
return ContractionBlock(
in_channels=in_channels,
out_channels=out_channels,
non_linearity=self.non_linearity,
nonormalization=self.normalization,
bias=self.bias_conv,
pad=self.pad,
)
def _get_expansion_block(
self, in_channels: int, out_channels: int
) -> ExpansionBlock:
return ExpansionBlock(
in_channels=in_channels,
out_channels=out_channels,
non_linearity=self.non_linearity,
normalization=self.normalization,
bias=self.bias_conv,
bilinear=self.bilinear,
pad=self.pad,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1 = self.first_convs(x)
x2 = self.contraction1(x1)
x3 = self.contraction2(x2)
x4 = self.contraction3(x3)
x5 = self.contraction4(x4)
x = self.expansion4(x4, x5)
x = self.expansion3(x3, x)
x = self.expansion2(x2, x)
x = self.expansion1(x1, x)
x = self.last_conv(x)
return x
|