--- pipeline_tag: any-to-any library_name: transformers tags: - text-to-image - image-editing - image-understanding - vision-language - multimodal - autoregressive - unified-model license: mit --- ## ๐ŸŒŒ UniPic2-SD3.5M-Kontext-2B
Skywork Logo

GitHub Repo GitHub Stars GitHub Forks

## ๐Ÿ“– Introduction **UniPic2-SD3.5M-Kontext-2B** is a post-trained **T2I ** model built on the SD3.5-Medium. It focuses on text-to-image generation and image editing, delivering strong quality with a fast generation speed. It runs smoothly on a single 16 GB consumer GPU.
Model Teaser
## ๐Ÿ“Š Benchmarks **UniPic2-SD3.5M-Kontext-2B** w/o GRPO achieves competitive results across a variety of vision-language tasks: | Task | Score | |--------------------|--------| | ๐Ÿง  **GenEval** | 0.83 | | ๐Ÿ–ผ๏ธ **DPG-Bench** | 83.7 | | โœ‚๏ธ **GEditBench-EN** | 6.31 | | ๐Ÿงช **ImgEdit-Bench** | 3.95 | ## ๐Ÿง  Usage ### 1. Clone the Repository ```bash git clone https://github.com/SkyworkAI/UniPic cd UniPic-2 ``` ### 2. Set Up the Environment ```bash conda create -n unipic python=3.10 conda activate unipic pip install -r requirements.txt ``` ### 3.Text-to-Image Generation ```bash import torch from PIL import Image from unipicv2.pipeline_stable_diffusion_3_kontext import StableDiffusion3KontextPipeline from unipicv2.transformer_sd3_kontext import SD3Transformer2DKontextModel from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5TokenizerFast # Load model components pretrained_model_name_or_path = "Skywork/UniPic2-SD3.5M-Kontext-2B" transformer = SD3Transformer2DKontextModel.from_pretrained( pretrained_model_name_or_path, subfolder="transformer", torch_dtype=torch.bfloat16).cuda() vae = AutoencoderKL.from_pretrained( pretrained_model_name_or_path, subfolder="vae", torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True ).cuda() # Load text encoders text_encoder = CLIPTextModelWithProjection.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder", torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True ).cuda() tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer") text_encoder_2 = CLIPTextModelWithProjection.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder_2", torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True ).cuda() tokenizer_2 = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_2") text_encoder_3 = T5EncoderModel.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder_3", torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True ).cuda() tokenizer_3 = T5TokenizerFast.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_3") scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( pretrained_model_name_or_path, subfolder="scheduler" ) # Create pipeline pipeline = StableDiffusion3KontextPipeline( transformer=transformer, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, text_encoder_2=text_encoder_2, tokenizer_2=tokenizer_2, text_encoder_3=text_encoder_3, tokenizer_3=tokenizer_3, scheduler=scheduler) # Generate image image = pipeline( prompt='a pig with wings and a top hat flying over a happy futuristic scifi city', negative_prompt='blurry, low quality, low resolution, distorted, deformed, broken content, missing parts, damaged details, artifacts, glitch, noise, pixelated, grainy, compression artifacts, bad composition, wrong proportion, incomplete editing, unfinished, unedited areas.', height=512, width=384, num_inference_steps=50, guidance_scale=3.5, generator=torch.Generator(device=transformer.device).manual_seed(42) ).images[0] image.save("text2image.png") ``` ### 4. Image Editing ```bash # Load and preprocess image def fix_longer_edge(x, image_size, factor=32): w, h = x.size if w >= h: target_w = image_size target_h = h * (target_w / w) target_h = round(target_h / factor) * factor else: target_h = image_size target_w = w * (target_h / h) target_w = round(target_w / factor) * factor x = x.resize(size=(target_w, target_h)) return x image = Image.open("text2image.png") image = fix_longer_edge(image, image_size=512) negative_prompt = "blurry, low quality, low resolution, distorted, deformed, broken content, missing parts, damaged details, artifacts, glitch, noise, pixelated, grainy, compression artifacts, bad composition, wrong proportion, incomplete editing, unfinished, unedited areas." # Edit image edited_image = pipeline( image=image, prompt="remove the pig's hat", negative_prompt=negative_prompt, height=image.height, width=image.width, num_inference_steps=50, guidance_scale=3.5, generator=torch.Generator(device=transformer.device).manual_seed(42) ).images[0] edited_image.save("edited_img.png") ``` ## ๐Ÿ“„ License This model is released under the MIT License. ## Citation If you use Skywork-UniPic in your research, please cite: ``` @misc{wang2025skyworkunipicunifiedautoregressive, title={Skywork UniPic: Unified Autoregressive Modeling for Visual Understanding and Generation}, author={Peiyu Wang and Yi Peng and Yimeng Gan and Liang Hu and Tianyidan Xie and Xiaokun Wang and Yichen Wei and Chuanxin Tang and Bo Zhu and Changshi Li and Hongyang Wei and Eric Li and Xuchen Song and Yang Liu and Yahui Zhou}, year={2025}, eprint={2508.03320}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2508.03320}, } ```