File size: 9,278 Bytes
e410c29 a1cde68 e410c29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
---
pipeline_tag: any-to-any
library_name: transformers
tags:
- text-to-image
- image-editing
- image-understanding
- vision-language
- multimodal
- autoregressive
- unified-model
license: mit
---
## 🌌 UniPic2-Metaquery-GRPO-Flash
<div align="center">
<img src="skywork-logo.png" alt="Skywork Logo" width="500">
</div>
<p align="center">
<a href="https://github.com/SkyworkAI/UniPic">
<img src="https://img.shields.io/badge/GitHub-UniPic-blue?logo=github" alt="GitHub Repo">
</a>
<a href="https://github.com/SkyworkAI/UniPic/stargazers">
<img src="https://img.shields.io/github/stars/SkyworkAI/UniPic?style=social" alt="GitHub Stars">
</a>
<a href="https://github.com/SkyworkAI/UniPic/network/members">
<img src="https://img.shields.io/github/forks/SkyworkAI/UniPic?style=social" alt="GitHub Forks">
</a>
</p>
## 📖 Introduction
**UniPic2-Metaquery-GRPO-Flash** is a quantized variant of UniPic2-MetaQuery-GRPO, offering end-to-end image understanding, text-to-image (T2I) generation, and image editing. Optimized for efficiency, it runs smoothly on NVIDIA RTX 40-series GPUs with under 16 GB VRAM — without any performance degradation.
<div align="center"> <img src="teaser.png" alt="Model Teaser" width="720"> </div>
<div align="center"> <img src="understanding.png" alt="Model Teaser" width="720"> </div>
## 📊 Benchmarks
<div align="center"> <img src="eval.png" alt="Model Eval" width="720"> </div>
## 🧠 Usage
### 1. Clone the Repository
```bash
git clone https://github.com/SkyworkAI/UniPic
cd UniPic-2
```
### 2. Set Up the Environment
```bash
conda create -n unipic python=3.10
conda activate unipic
pip install -r requirements.txt
```
### 3.Text-to-Image Generation
```bash
import torch
from PIL import Image
from unipicv2.pipeline_stable_diffusion_3_kontext import StableDiffusion3KontextPipeline
from unipicv2.transformer_sd3_kontext import SD3Transformer2DKontextModel
from unipicv2.stable_diffusion_3_conditioner import StableDiffusion3Conditioner
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL,BitsAndBytesConfig
# Load model components
pretrained_model_name_or_path = "/path/to/UniPic2-Metaquery-Flash/UniPic2-Metaquery"
vlm_path = "/path/to/UniPic2-Metaquery-Flash/Qwen2.5-VL-7B-Instruct-AWQ"
quant = "int4" # {"int4", "fp16"}
bnb4 = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16, # 与 LMM/Cond 对齐
)
if quant == "int4":
transformer = SD3Transformer2DKontextModel.from_pretrained(
pretrained_model_name_or_path, subfolder="transformer",
quantization_config=bnb4, device_map="auto", low_cpu_mem_usage=True
)
elif quant == "fp16":
transformer = SD3Transformer2DKontextModel.from_pretrained(
pretrained_model_name_or_path, subfolder="transformer",
torch_dtype=torch.float16, device_map="auto", low_cpu_mem_usage=True
)
else:
raise ValueError(f"Unsupported quant: {quant}")
vae = AutoencoderKL.from_pretrained(
pretrained_model_name_or_path, subfolder="vae",
torch_dtype=torch.float16, device_map="auto", low_cpu_mem_usage=True).cuda()
# Load Qwen2.5-VL model
lmm = Qwen2_5_VLForConditionalGeneration.from_pretrained(
vlm_path,
torch_dtype=torch.bfloat16,device_map="auto",
attn_implementation="flash_attention_2")
processor = Qwen2_5_VLProcessor.from_pretrained(vlm_path)
processor.chat_template = processor.chat_template.replace(
"{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}",
"")
# 加上cuda
conditioner = StableDiffusion3Conditioner.from_pretrained(
pretrained_model_name_or_path, subfolder="conditioner", torch_dtype=torch.float16).cuda()
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
# Create pipeline (note: text encoders set to None)
pipeline = StableDiffusion3KontextPipeline(
transformer=transformer, vae=vae,
text_encoder=None, tokenizer=None,
text_encoder_2=None, tokenizer_2=None,
text_encoder_3=None, tokenizer_3=None,
scheduler=scheduler)
# Prepare prompts
prompt = 'a pig with wings and a top hat flying over a happy futuristic scifi city'
negative_prompt = ''
messages = [[{"role": "user", "content": [{"type": "text", "text": f'Generate an image: {txt}'}]}]
for txt in [prompt, negative_prompt]]
texts = [processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) for msg in messages]
inputs = processor(text=texts, images=None, videos=None, padding=True, return_tensors="pt").to("cuda")
# Process with Qwen2.5-VL
input_ids, attention_mask = inputs.input_ids, inputs.attention_mask
input_ids = torch.cat([input_ids, input_ids.new_zeros(2, conditioner.config.num_queries)], dim=1)
attention_mask = torch.cat([attention_mask, attention_mask.new_ones(2, conditioner.config.num_queries)], dim=1)
inputs_embeds = lmm.get_input_embeddings()(input_ids)
inputs_embeds[:, -conditioner.config.num_queries:] = conditioner.meta_queries[None].expand(2, -1, -1)
outputs = lmm.model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, use_cache=False)
hidden_states = outputs.last_hidden_state[:, -conditioner.config.num_queries:]
prompt_embeds, pooled_prompt_embeds = conditioner(hidden_states)
# Generate image
image = pipeline(
prompt_embeds=prompt_embeds[:1],
pooled_prompt_embeds=pooled_prompt_embeds[:1],
negative_prompt_embeds=prompt_embeds[1:],
negative_pooled_prompt_embeds=pooled_prompt_embeds[1:],
height=512, width=384,
num_inference_steps=50,
guidance_scale=3.5,
generator=torch.Generator(device=transformer.device).manual_seed(42)
).images[0]
image.save("text2image.png")
print(f"Image saved to text2image.png (quant={quant})")
```
### 4. Image Editing
```bash
# Load image for editing
image = Image.open("text2image.png")
image = fix_longer_edge(image, image_size=512)
prompt = "remove the pig's hat"
negative_prompt = "blurry, low quality, low resolution, distorted, deformed, broken content, missing parts, damaged details, artifacts, glitch, noise, pixelated, grainy, compression artifacts, bad composition, wrong proportion, incomplete editing, unfinished, unedited areas."
# Prepare messages with image input
messages = [[{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": txt}]}]
for txt in [prompt, negative_prompt]]
texts = [processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) for msg in messages]
min_pixels = max_pixels = int(image.height * 28 / 32 * image.width * 28 / 32)
inputs = processor(
text=texts, images=[image]*2,
min_pixels=min_pixels, max_pixels=max_pixels,
videos=None, padding=True, return_tensors="pt").cuda()
# Process with vision understanding
input_ids, attention_mask, pixel_values, image_grid_thw = \
inputs.input_ids, inputs.attention_mask, inputs.pixel_values, inputs.image_grid_thw
input_ids = torch.cat([input_ids, input_ids.new_zeros(2, conditioner.config.num_queries)], dim=1)
attention_mask = torch.cat([attention_mask, attention_mask.new_ones(2, conditioner.config.num_queries)], dim=1)
inputs_embeds = lmm.get_input_embeddings()(input_ids)
inputs_embeds[:, -conditioner.config.num_queries:] = conditioner.meta_queries[None].expand(2, -1, -1)
image_embeds = lmm.visual(pixel_values, grid_thw=image_grid_thw)
image_token_id = processor.tokenizer.convert_tokens_to_ids('<|image_pad|>')
inputs_embeds[input_ids == image_token_id] = image_embeds
lmm.model.rope_deltas = None
outputs = lmm.model(inputs_embeds=inputs_embeds, attention_mask=attention_mask,
image_grid_thw=image_grid_thw, use_cache=False)
hidden_states = outputs.last_hidden_state[:, -conditioner.config.num_queries:]
prompt_embeds, pooled_prompt_embeds = conditioner(hidden_states)
# Generate edited image
edited_image = pipeline(
image=image,
prompt_embeds=prompt_embeds[:1],
pooled_prompt_embeds=pooled_prompt_embeds[:1],
negative_prompt_embeds=prompt_embeds[1:],
negative_pooled_prompt_embeds=pooled_prompt_embeds[1:],
height=image.height, width=image.width,
num_inference_steps=50,
guidance_scale=3.5,
generator=torch.Generator(device=transformer.device).manual_seed(42)
).images[0]
edited_image.save("edited_image.png")
print(f"Image saved to edited_image.png (quant={quant})")
```
## 📄 License
This model is released under the MIT License.
## Citation
If you use Skywork-UniPic in your research, please cite:
```
@misc{wang2025skyworkunipicunifiedautoregressive,
title={Skywork UniPic: Unified Autoregressive Modeling for Visual Understanding and Generation},
author={Peiyu Wang and Yi Peng and Yimeng Gan and Liang Hu and Tianyidan Xie and Xiaokun Wang and Yichen Wei and Chuanxin Tang and Bo Zhu and Changshi Li and Hongyang Wei and Eric Li and Xuchen Song and Yang Liu and Yahui Zhou},
year={2025},
eprint={2508.03320},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2508.03320},
}
``` |