sealical commited on
Commit
93fca56
·
verified ·
1 Parent(s): cb65b5c

Upload folder using huggingface_hub

Browse files
Files changed (46) hide show
  1. .gitattributes +2 -0
  2. .ipynb_checkpoints/config-checkpoint.json +209 -0
  3. .ipynb_checkpoints/configuration_skywork_chat-checkpoint.py +91 -0
  4. README.md +272 -3
  5. added_tokens.json +33 -0
  6. config.json +208 -0
  7. configuration_intern_vit.py +120 -0
  8. configuration_internlm2.py +150 -0
  9. configuration_internvl_chat.py +112 -0
  10. configuration_skywork_chat.py +91 -0
  11. configuration_skywork_lm2.py +138 -0
  12. configuration_skywork_vit.py +101 -0
  13. conversation.py +343 -0
  14. generation_config.json +4 -0
  15. inputs_stats.pth +3 -0
  16. merges.txt +0 -0
  17. modeling_intern_vit.py +430 -0
  18. modeling_internlm2.py +1415 -0
  19. modeling_internvl_chat.py +387 -0
  20. modeling_skywork_chat.py +357 -0
  21. modeling_skywork_lm2.py +1380 -0
  22. modeling_skywork_vit.py +423 -0
  23. outputs_stats.pth +3 -0
  24. preprocessor_config.json +19 -0
  25. pytorch_model-00001-of-00016.bin +3 -0
  26. pytorch_model-00002-of-00016.bin +3 -0
  27. pytorch_model-00003-of-00016.bin +3 -0
  28. pytorch_model-00004-of-00016.bin +3 -0
  29. pytorch_model-00005-of-00016.bin +3 -0
  30. pytorch_model-00006-of-00016.bin +3 -0
  31. pytorch_model-00007-of-00016.bin +3 -0
  32. pytorch_model-00008-of-00016.bin +3 -0
  33. pytorch_model-00009-of-00016.bin +3 -0
  34. pytorch_model-00010-of-00016.bin +3 -0
  35. pytorch_model-00011-of-00016.bin +3 -0
  36. pytorch_model-00012-of-00016.bin +3 -0
  37. pytorch_model-00013-of-00016.bin +3 -0
  38. pytorch_model-00014-of-00016.bin +3 -0
  39. pytorch_model-00015-of-00016.bin +3 -0
  40. pytorch_model-00016-of-00016.bin +3 -0
  41. pytorch_model.bin.index.json +0 -0
  42. skywork-logo.png +3 -0
  43. special_tokens_map.json +31 -0
  44. tokenizer.json +3 -0
  45. tokenizer_config.json +281 -0
  46. vocab.json +0 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ skywork-logo.png filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
.ipynb_checkpoints/config-checkpoint.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "/mnt/datasets_vlm/tianxie/LLM_Quantization/Skywork-R1V3-38B",
4
+ "architectures": [
5
+ "SkyworkChatModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_skywork_chat.SkyworkChatConfig",
9
+ "AutoModel": "modeling_skywork_chat.SkyworkChatModel",
10
+ "AutoModelForCausalLM": "modeling_skywork_chat.SkyworkChatModel"
11
+ },
12
+ "downsample_ratio": 0.5,
13
+ "dynamic_image_size": true,
14
+ "force_image_size": 448,
15
+ "freeze_adapter": false,
16
+ "freeze_llm": false,
17
+ "freeze_vision": false,
18
+ "hidden_size": 5120,
19
+ "llm_config": {
20
+ "_attn_implementation_autoset": true,
21
+ "_name_or_path": "",
22
+ "add_cross_attention": false,
23
+ "architectures": [
24
+ "Qwen2ForCausalLM"
25
+ ],
26
+ "attention_dropout": 0.0,
27
+ "attn_implementation": "eager",
28
+ "bad_words_ids": null,
29
+ "begin_suppress_tokens": null,
30
+ "bos_token_id": 151643,
31
+ "chunk_size_feed_forward": 0,
32
+ "cross_attention_hidden_size": null,
33
+ "decoder_start_token_id": null,
34
+ "diversity_penalty": 0.0,
35
+ "do_sample": false,
36
+ "early_stopping": false,
37
+ "encoder_no_repeat_ngram_size": 0,
38
+ "eos_token_id": 151645,
39
+ "exponential_decay_length_penalty": null,
40
+ "finetuning_task": null,
41
+ "forced_bos_token_id": null,
42
+ "forced_eos_token_id": null,
43
+ "hidden_act": "silu",
44
+ "hidden_size": 5120,
45
+ "id2label": {
46
+ "0": "LABEL_0",
47
+ "1": "LABEL_1"
48
+ },
49
+ "initializer_range": 0.02,
50
+ "intermediate_size": 27648,
51
+ "is_decoder": false,
52
+ "is_encoder_decoder": false,
53
+ "label2id": {
54
+ "LABEL_0": 0,
55
+ "LABEL_1": 1
56
+ },
57
+ "length_penalty": 1.0,
58
+ "max_length": 20,
59
+ "max_position_embeddings": 32768,
60
+ "max_window_layers": 70,
61
+ "min_length": 0,
62
+ "model_type": "qwen2",
63
+ "no_repeat_ngram_size": 0,
64
+ "num_attention_heads": 40,
65
+ "num_beam_groups": 1,
66
+ "num_beams": 1,
67
+ "num_hidden_layers": 64,
68
+ "num_key_value_heads": 8,
69
+ "num_return_sequences": 1,
70
+ "output_attentions": false,
71
+ "output_hidden_states": false,
72
+ "output_scores": false,
73
+ "pad_token_id": null,
74
+ "prefix": null,
75
+ "problem_type": null,
76
+ "pruned_heads": {},
77
+ "quantization_config": {
78
+ "bits": 4,
79
+ "group_size": 128,
80
+ "quant_method": "awq",
81
+ "version": "gemm",
82
+ "zero_point": true
83
+ },
84
+ "remove_invalid_values": false,
85
+ "repetition_penalty": 1.0,
86
+ "return_dict": true,
87
+ "return_dict_in_generate": false,
88
+ "rms_norm_eps": 1e-06,
89
+ "rope_scaling": null,
90
+ "rope_theta": 1000000.0,
91
+ "sep_token_id": null,
92
+ "sliding_window": null,
93
+ "suppress_tokens": null,
94
+ "task_specific_params": null,
95
+ "temperature": 1.0,
96
+ "tf_legacy_loss": false,
97
+ "tie_encoder_decoder": false,
98
+ "tie_word_embeddings": false,
99
+ "tokenizer_class": null,
100
+ "top_k": 50,
101
+ "top_p": 1.0,
102
+ "torch_dtype": "bfloat16",
103
+ "torchscript": false,
104
+ "transformers_version": "4.46.3",
105
+ "typical_p": 1.0,
106
+ "use_bfloat16": true,
107
+ "use_cache": false,
108
+ "use_sliding_window": false,
109
+ "vocab_size": 151674
110
+ },
111
+ "max_dynamic_patch": 6,
112
+ "min_dynamic_patch": 1,
113
+ "model_type": "skywork_chat",
114
+ "pad2square": false,
115
+ "ps_version": "v2",
116
+ "select_layer": -1,
117
+ "template": "skywork-r1v-chat",
118
+ "tie_word_embeddings": false,
119
+ "torch_dtype": "float16",
120
+ "transformers_version": null,
121
+ "use_backbone_lora": 0,
122
+ "use_llm_lora": 0,
123
+ "use_thumbnail": true,
124
+ "vision_config": {
125
+ "_attn_implementation_autoset": true,
126
+ "_name_or_path": "",
127
+ "add_cross_attention": false,
128
+ "architectures": [
129
+ "InternVisionModel"
130
+ ],
131
+ "attention_dropout": 0.0,
132
+ "bad_words_ids": null,
133
+ "begin_suppress_tokens": null,
134
+ "bos_token_id": null,
135
+ "chunk_size_feed_forward": 0,
136
+ "cross_attention_hidden_size": null,
137
+ "decoder_start_token_id": null,
138
+ "diversity_penalty": 0.0,
139
+ "do_sample": false,
140
+ "drop_path_rate": 0.1,
141
+ "dropout": 0.0,
142
+ "early_stopping": false,
143
+ "encoder_no_repeat_ngram_size": 0,
144
+ "eos_token_id": null,
145
+ "exponential_decay_length_penalty": null,
146
+ "finetuning_task": null,
147
+ "forced_bos_token_id": null,
148
+ "forced_eos_token_id": null,
149
+ "hidden_act": "gelu",
150
+ "hidden_size": 3200,
151
+ "id2label": {
152
+ "0": "LABEL_0",
153
+ "1": "LABEL_1"
154
+ },
155
+ "image_size": 448,
156
+ "initializer_factor": 0.1,
157
+ "initializer_range": 1e-10,
158
+ "intermediate_size": 12800,
159
+ "is_decoder": false,
160
+ "is_encoder_decoder": false,
161
+ "label2id": {
162
+ "LABEL_0": 0,
163
+ "LABEL_1": 1
164
+ },
165
+ "layer_norm_eps": 1e-06,
166
+ "length_penalty": 1.0,
167
+ "max_length": 20,
168
+ "min_length": 0,
169
+ "model_type": "",
170
+ "no_repeat_ngram_size": 0,
171
+ "norm_type": "rms_norm",
172
+ "num_attention_heads": 25,
173
+ "num_beam_groups": 1,
174
+ "num_beams": 1,
175
+ "num_channels": 3,
176
+ "num_hidden_layers": 45,
177
+ "num_return_sequences": 1,
178
+ "output_attentions": false,
179
+ "output_hidden_states": false,
180
+ "output_scores": false,
181
+ "pad_token_id": null,
182
+ "patch_size": 14,
183
+ "prefix": null,
184
+ "problem_type": null,
185
+ "pruned_heads": {},
186
+ "qk_normalization": true,
187
+ "qkv_bias": false,
188
+ "remove_invalid_values": false,
189
+ "repetition_penalty": 1.0,
190
+ "return_dict": true,
191
+ "return_dict_in_generate": false,
192
+ "sep_token_id": null,
193
+ "suppress_tokens": null,
194
+ "task_specific_params": null,
195
+ "temperature": 1.0,
196
+ "tf_legacy_loss": false,
197
+ "tie_encoder_decoder": false,
198
+ "tie_word_embeddings": true,
199
+ "tokenizer_class": null,
200
+ "top_k": 50,
201
+ "top_p": 1.0,
202
+ "torch_dtype": "bfloat16",
203
+ "torchscript": false,
204
+ "transformers_version": "4.46.3",
205
+ "typical_p": 1.0,
206
+ "use_bfloat16": true,
207
+ "use_flash_attn": false
208
+ }
209
+ }
.ipynb_checkpoints/configuration_skywork_chat-checkpoint.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+
3
+ from transformers import AutoConfig, LlamaConfig
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+
7
+ from .configuration_skywork_vit import SkyworkVisionConfig
8
+ from .configuration_skywork_lm2 import SkyworkLM2Config
9
+ from transformers import Qwen2Config, Qwen2ForCausalLM
10
+
11
+ logger = logging.get_logger(__name__)
12
+
13
+
14
+ class SkyworkChatConfig(PretrainedConfig):
15
+ model_type = 'skywork_chat'
16
+ is_composition = True
17
+
18
+ def __init__(
19
+ self,
20
+ vision_config=None,
21
+ llm_config=None,
22
+ use_backbone_lora=0,
23
+ use_llm_lora=0,
24
+ select_layer=-1,
25
+ force_image_size=None,
26
+ downsample_ratio=0.5,
27
+ template=None,
28
+ dynamic_image_size=False,
29
+ use_thumbnail=False,
30
+ ps_version='v1',
31
+ min_dynamic_patch=1,
32
+ max_dynamic_patch=6,
33
+ **kwargs):
34
+ super().__init__(**kwargs)
35
+ if vision_config is None:
36
+ vision_config = {'architectures': ['SkyworkVisionModel']}
37
+ logger.info('vision_config is None. Initializing the SkyworkVisionConfig with default values.')
38
+
39
+ if llm_config is None:
40
+ llm_config = {'architectures': ['Qwen2ForCausalLM']}
41
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
42
+
43
+ self.vision_config = SkyworkVisionConfig(**vision_config)
44
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
45
+ self.llm_config = LlamaConfig(**llm_config)
46
+ elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
47
+ self.llm_config = Qwen2Config(**llm_config)
48
+ else:
49
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
50
+
51
+
52
+ self.use_backbone_lora = use_backbone_lora
53
+ self.use_llm_lora = use_llm_lora
54
+ self.select_layer = select_layer
55
+ self.force_image_size = force_image_size
56
+ self.downsample_ratio = downsample_ratio
57
+ self.template = template
58
+ self.dynamic_image_size = dynamic_image_size
59
+ self.use_thumbnail = use_thumbnail
60
+ self.ps_version = ps_version # pixel shuffle version
61
+ self.min_dynamic_patch = min_dynamic_patch
62
+ self.max_dynamic_patch = max_dynamic_patch
63
+
64
+ logger.info(f'vision_select_layer: {self.select_layer}')
65
+ logger.info(f'ps_version: {self.ps_version}')
66
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
67
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
68
+
69
+ def to_dict(self):
70
+ """
71
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
72
+ Returns:
73
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
74
+ """
75
+ output = copy.deepcopy(self.__dict__)
76
+ output['vision_config'] = self.vision_config.to_dict()
77
+ output['llm_config'] = self.llm_config.to_dict()
78
+ output['model_type'] = self.__class__.model_type
79
+ output['use_backbone_lora'] = self.use_backbone_lora
80
+ output['use_llm_lora'] = self.use_llm_lora
81
+ output['select_layer'] = self.select_layer
82
+ output['force_image_size'] = self.force_image_size
83
+ output['downsample_ratio'] = self.downsample_ratio
84
+ output['template'] = self.template
85
+ output['dynamic_image_size'] = self.dynamic_image_size
86
+ output['use_thumbnail'] = self.use_thumbnail
87
+ output['ps_version'] = self.ps_version
88
+ output['min_dynamic_patch'] = self.min_dynamic_patch
89
+ output['max_dynamic_patch'] = self.max_dynamic_patch
90
+
91
+ return output
README.md CHANGED
@@ -1,3 +1,272 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: transformers
4
+ pipeline_tag: image-text-to-text
5
+ ---
6
+ # Skywork-R1V2-38B-AWQ
7
+
8
+ <div align="center">
9
+ <img src="skywork-logo.png" alt="Introduction Image" width="500" height="400">
10
+ </div>
11
+
12
+ ## 📖 [R1V2 Report](https://arxiv.org/abs/2504.16656) | 💻 [GitHub](https://github.com/SkyworkAI/Skywork-R1V) | 🌐 [ModelScope](https://modelscope.cn/models/Skywork/Skywork-R1V2-38B)
13
+
14
+ <div align="center">
15
+
16
+ [![GitHub Stars](https://img.shields.io/github/stars/SkyworkAI/Skywork-R1V)](https://github.com/SkyworkAI/Skywork-R1V/stargazers)[![GitHub Forks](https://img.shields.io/github/forks/SkyworkAI/Skywork-R1V)](https://github.com/SkyworkAI/Skywork-R1V/fork)
17
+
18
+ </div>
19
+
20
+
21
+ ## Evaluation
22
+
23
+ <div align="center">
24
+ <b>Comprehensive performance comparison across text and multimodal reasoning benchmarks.</b>
25
+ </div>
26
+ <table align="center" border="1" style="border-collapse: collapse; width: 100%;">
27
+ <thead>
28
+ <tr>
29
+ <th>Model</th>
30
+ <th align="center">MMMU</th>
31
+ <th align="center">MathVista</th>
32
+ <th align="center">MathVision</th>
33
+ <th align="center">Olympiad Bench</th>
34
+ <th align="center">AIME 24</th>
35
+ <th align="center">LiveCode bench</th>
36
+ <th align="center">Live Bench</th>
37
+ <th align="center">IFEVAL</th>
38
+ </tr>
39
+ </thead>
40
+ <tbody>
41
+ <tr>
42
+ <td colspan="9" align="center"><i>Proprietary Models</i></td>
43
+ </tr>
44
+ <tr>
45
+ <td>Claude-3.5-Sonnet</td>
46
+ <td align="center">70.4</td>
47
+ <td align="center">67.7</td>
48
+ <td align="center">-</td>
49
+ <td align="center">-</td>
50
+ <td align="center">-</td>
51
+ <td align="center">-</td>
52
+ <td align="center">-</td>
53
+ <td align="center">-</td>
54
+ </tr>
55
+ <tr>
56
+ <td>Gemini-2-Flash</td>
57
+ <td align="center">70.7</td>
58
+ <td align="center">73.1</td>
59
+ <td align="center">41.3</td>
60
+ <td align="center">-</td>
61
+ <td align="center">-</td>
62
+ <td align="center">-</td>
63
+ <td align="center">-</td>
64
+ <td align="center">-</td>
65
+ </tr>
66
+ <tr>
67
+ <td>Kimi-k1.5-longcot</td>
68
+ <td align="center">70.0</td>
69
+ <td align="center">74.9</td>
70
+ <td align="center">53.3</td>
71
+ <td align="center">-</td>
72
+ <td align="center">-</td>
73
+ <td align="center">-</td>
74
+ <td align="center">-</td>
75
+ <td align="center">-</td>
76
+ </tr>
77
+ <tr>
78
+ <td>OpenAI-o1</td>
79
+ <td align="center">-</td>
80
+ <td align="center">-</td>
81
+ <td align="center">-</td>
82
+ <td align="center">-</td>
83
+ <td align="center">74.3</td>
84
+ <td align="center">63.4</td>
85
+ <td align="center">72.2</td>
86
+ <td align="center">-</td>
87
+ </tr>
88
+ <tr>
89
+ <td>OpenAI-o4-mini</td>
90
+ <td align="center"><b>81.6</b></td>
91
+ <td align="center"><b>84.3</b></td>
92
+ <td align="center"><b>58.0</b></td>
93
+ <td align="center">-</td>
94
+ <td align="center"><b>93.4</b></td>
95
+ <td align="center"><b>74.6</b></td>
96
+ <td align="center"><b>78.1</b></td>
97
+ <td align="center">-</td>
98
+ </tr>
99
+ <tr>
100
+ <td colspan="9" align="center"><i>Open-Source Models</i></td>
101
+ </tr>
102
+ <tr>
103
+ <td>Skywork-R1V1</td>
104
+ <td align="center">68.0</td>
105
+ <td align="center">67.0</td>
106
+ <td align="center">-</td>
107
+ <td align="center">-</td>
108
+ <td align="center">72.0</td>
109
+ <td align="center">57.2</td>
110
+ <td align="center">54.6</td>
111
+ <td align="center">72.5</td>
112
+ </tr>
113
+ <tr>
114
+ <td>DeepseekR1-671B</td>
115
+ <td align="center">-</td>
116
+ <td align="center">-</td>
117
+ <td align="center">-</td>
118
+ <td align="center">-</td
119
+ >
120
+ <td align="center"><b>79.8</b></td>
121
+ <td align="center"><b>65.9</b></td>
122
+ <td align="center">71.6</td>
123
+ <td align="center"><b>83.3</b></td>
124
+ </tr>
125
+ <tr>
126
+ <td>InternVL3-38B</td>
127
+ <td align="center">70.1</td>
128
+ <td align="center">75.1</td>
129
+ <td align="center">34.2</td>
130
+ <td align="center">-</td>
131
+ <td align="center">-</td>
132
+ <td align="center">-</td>
133
+ <td align="center">-</td>
134
+ <td align="center">-</td>
135
+ </tr>
136
+ <tr>
137
+ <td>Qwen2.5-VL-72B</td>
138
+ <td align="center">70.2</td>
139
+ <td align="center">74.8</td>
140
+ <td align="center">38.1</td>
141
+ <td align="center">40.4</td>
142
+ <td align="center">-</td>
143
+ <td align="center">-</td>
144
+ <td align="center">-</td>
145
+ <td align="center">-</td>
146
+ </tr>
147
+ <tr>
148
+ <td>QvQ-Preview-72B</td>
149
+ <td align="center">70.3</td>
150
+ <td align="center">71.4</td>
151
+ <td align="center">35.9</td>
152
+ <td align="center">33.2</td>
153
+ <td align="center">-</td>
154
+ <td align="center">-</td>
155
+ <td align="center">-</td>
156
+ <td align="center">-</td>
157
+ </tr>
158
+ <tr>
159
+ <td>Skywork-R1V2</td>
160
+ <td align="center"><b>73.6</b></td>
161
+ <td align="center">74.0</td>
162
+ <td align="center"><b>49.0</b></td>
163
+ <td align="center"><b>62.6</b></td>
164
+ <td align="center">78.9</td>
165
+ <td align="center">63.6</td>
166
+ <td align="center"><b>73.2</b></td>
167
+ <td align="center">82.9</td>
168
+ </tr>
169
+ <tr>
170
+ <td>Skywork-R1V2-AWQ</td>
171
+ <td align="center">64.4</td>
172
+ <td align="center">64.8</td>
173
+ <td align="center">42.9</td>
174
+ <td align="center">54.8</td>
175
+ <td align="center">77.3</td>
176
+ <td align="center">55.7</td>
177
+ <td align="center">64.1</td>
178
+ <td align="center">72.5</td>
179
+ </tr>
180
+ </tbody>
181
+ </table>
182
+
183
+ ## Usage
184
+ You can use the quantized model with different inference frameworks:
185
+ ### Using VLLM
186
+
187
+
188
+ #### Python API
189
+
190
+ ```python
191
+ import os
192
+ from vllm import LLM, SamplingParams
193
+ from vllm.entrypoints.chat_utils import load_chat_template
194
+ model_name = "Skywork/Skywork-R1V2-38B-AWQ" # or local path
195
+ llm = LLM(model_name,
196
+ dtype='float16',
197
+ quantization="awq",
198
+ gpu_memory_utilization=0.9,
199
+ max_model_len=4096,
200
+ trust_remote_code=True,
201
+ )
202
+ # Add your inference code here
203
+ ```
204
+
205
+ #### OpenAI-compatible API Server
206
+
207
+ ```bash
208
+ MODEL_ID="Skywork/Skywork-R1V2-38B-AWQ" # or local path
209
+ CUDA_VISIBLE_DEVICES=0 \
210
+ python -m vllm.entrypoints.openai.api_server \
211
+ --model $MODEL_ID \
212
+ --dtype float16 \
213
+ --quantization awq \
214
+ --port 23334 \
215
+ --max-model-len 12000 \
216
+ --gpu-memory-utilization 0.9 \
217
+ --trust-remote-code
218
+ ```
219
+
220
+ ### Using LMDeploy
221
+
222
+ ```python
223
+ import os
224
+ from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
225
+ from lmdeploy.vl import load_image
226
+ model_path = "Skywork/Skywork-R1V2-38B-AWQ" # or local path
227
+ engine_config = TurbomindEngineConfig(cache_max_entry_count=0.75)
228
+ chat_template_config = ChatTemplateConfig(model_name=model_path)
229
+ pipe = pipeline(model_path,
230
+ backend_config=engine_config,
231
+ chat_template_config=chat_template_config,
232
+ )
233
+ # Example: Multimodal inference
234
+ image = load_image('table.jpg')
235
+ response = pipe(('Describe this image?', image))
236
+ print(response.text)
237
+ ```
238
+
239
+ ## Hardware Requirements
240
+
241
+ The AWQ quantization reduces the memory footprint compared to the original FP16 model. We recommend:
242
+
243
+ - At least one GPU with 30GB+ VRAM for inference
244
+ - For optimal performance with longer contexts, 40GB+ VRAM is recommended
245
+
246
+ ## Citation
247
+
248
+ If you use this model in your research, please cite:
249
+
250
+ ```bibtex
251
+ @misc{peng2025skyworkr1vpioneeringmultimodal,
252
+ title={Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought},
253
+ author={Yi Peng and Chris and Xiaokun Wang and Yichen Wei and Jiangbo Pei and Weijie Qiu and Ai Jian and Yunzhuo Hao and Jiachun Pan and Tianyidan Xie and Li Ge and Rongxian Zhuang and Xuchen Song and Yang Liu and Yahui Zhou},
254
+ year={2025},
255
+ eprint={2504.05599},
256
+ archivePrefix={arXiv},
257
+ primaryClass={cs.CV},
258
+ url={https://arxiv.org/abs/2504.05599},
259
+ }
260
+ ```
261
+
262
+ ```bibtex
263
+ @misc{chris2025skyworkr1v2multimodalhybrid,
264
+ title={Skywork R1V2: Multimodal Hybrid Reinforcement Learning for Reasoning},
265
+ author={Chris and Yichen Wei and Yi Peng and Xiaokun Wang and Weijie Qiu and Wei Shen and Tianyidan Xie and Jiangbo Pei and Jianhao Zhang and Yunzhuo Hao and Xuchen Song and Yang Liu and Yahui Zhou},
266
+ year={2025},
267
+ eprint={2504.16656},
268
+ archivePrefix={arXiv},
269
+ primaryClass={cs.CV},
270
+ url={https://arxiv.org/abs/2504.16656},
271
+ }
272
+ ```
added_tokens.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151673,
3
+ "</img>": 151666,
4
+ "</quad>": 151669,
5
+ "</ref>": 151671,
6
+ "</tool_call>": 151658,
7
+ "<IMG_CONTEXT>": 151667,
8
+ "<box>": 151672,
9
+ "<img>": 151665,
10
+ "<quad>": 151668,
11
+ "<ref>": 151670,
12
+ "<tool_call>": 151657,
13
+ "<|box_end|>": 151649,
14
+ "<|box_start|>": 151648,
15
+ "<|endoftext|>": 151643,
16
+ "<|file_sep|>": 151664,
17
+ "<|fim_middle|>": 151660,
18
+ "<|fim_pad|>": 151662,
19
+ "<|fim_prefix|>": 151659,
20
+ "<|fim_suffix|>": 151661,
21
+ "<|im_end|>": 151645,
22
+ "<|im_start|>": 151644,
23
+ "<|image_pad|>": 151655,
24
+ "<|object_ref_end|>": 151647,
25
+ "<|object_ref_start|>": 151646,
26
+ "<|quad_end|>": 151651,
27
+ "<|quad_start|>": 151650,
28
+ "<|repo_name|>": 151663,
29
+ "<|video_pad|>": 151656,
30
+ "<|vision_end|>": 151653,
31
+ "<|vision_pad|>": 151654,
32
+ "<|vision_start|>": 151652
33
+ }
config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "InternVLChatModel"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_skywork_chat.SkyworkChatConfig",
8
+ "AutoModel": "modeling_skywork_chat.SkyworkChatModel",
9
+ "AutoModelForCausalLM": "modeling_skywork_chat.SkyworkChatModel"
10
+ },
11
+ "downsample_ratio": 0.5,
12
+ "dynamic_image_size": true,
13
+ "force_image_size": 448,
14
+ "freeze_adapter": false,
15
+ "freeze_llm": false,
16
+ "freeze_vision": false,
17
+ "hidden_size": 5120,
18
+ "llm_config": {
19
+ "_attn_implementation_autoset": true,
20
+ "_name_or_path": "",
21
+ "add_cross_attention": false,
22
+ "architectures": [
23
+ "Qwen2ForCausalLM"
24
+ ],
25
+ "attention_dropout": 0.0,
26
+ "attn_implementation": "eager",
27
+ "bad_words_ids": null,
28
+ "begin_suppress_tokens": null,
29
+ "bos_token_id": 151643,
30
+ "chunk_size_feed_forward": 0,
31
+ "cross_attention_hidden_size": null,
32
+ "decoder_start_token_id": null,
33
+ "diversity_penalty": 0.0,
34
+ "do_sample": false,
35
+ "early_stopping": false,
36
+ "encoder_no_repeat_ngram_size": 0,
37
+ "eos_token_id": 151645,
38
+ "exponential_decay_length_penalty": null,
39
+ "finetuning_task": null,
40
+ "forced_bos_token_id": null,
41
+ "forced_eos_token_id": null,
42
+ "hidden_act": "silu",
43
+ "hidden_size": 5120,
44
+ "id2label": {
45
+ "0": "LABEL_0",
46
+ "1": "LABEL_1"
47
+ },
48
+ "initializer_range": 0.02,
49
+ "intermediate_size": 27648,
50
+ "is_decoder": false,
51
+ "is_encoder_decoder": false,
52
+ "label2id": {
53
+ "LABEL_0": 0,
54
+ "LABEL_1": 1
55
+ },
56
+ "length_penalty": 1.0,
57
+ "max_length": 20,
58
+ "max_position_embeddings": 32768,
59
+ "max_window_layers": 70,
60
+ "min_length": 0,
61
+ "model_type": "qwen2",
62
+ "no_repeat_ngram_size": 0,
63
+ "num_attention_heads": 40,
64
+ "num_beam_groups": 1,
65
+ "num_beams": 1,
66
+ "num_hidden_layers": 64,
67
+ "num_key_value_heads": 8,
68
+ "num_return_sequences": 1,
69
+ "output_attentions": false,
70
+ "output_hidden_states": false,
71
+ "output_scores": false,
72
+ "pad_token_id": null,
73
+ "prefix": null,
74
+ "problem_type": null,
75
+ "pruned_heads": {},
76
+ "quantization_config": {
77
+ "bits": 4,
78
+ "group_size": 128,
79
+ "quant_method": "awq",
80
+ "version": "gemm",
81
+ "zero_point": true
82
+ },
83
+ "remove_invalid_values": false,
84
+ "repetition_penalty": 1.0,
85
+ "return_dict": true,
86
+ "return_dict_in_generate": false,
87
+ "rms_norm_eps": 1e-06,
88
+ "rope_scaling": null,
89
+ "rope_theta": 1000000.0,
90
+ "sep_token_id": null,
91
+ "sliding_window": null,
92
+ "suppress_tokens": null,
93
+ "task_specific_params": null,
94
+ "temperature": 1.0,
95
+ "tf_legacy_loss": false,
96
+ "tie_encoder_decoder": false,
97
+ "tie_word_embeddings": false,
98
+ "tokenizer_class": null,
99
+ "top_k": 50,
100
+ "top_p": 1.0,
101
+ "torch_dtype": "bfloat16",
102
+ "torchscript": false,
103
+ "transformers_version": "4.46.3",
104
+ "typical_p": 1.0,
105
+ "use_bfloat16": true,
106
+ "use_cache": false,
107
+ "use_sliding_window": false,
108
+ "vocab_size": 151674
109
+ },
110
+ "max_dynamic_patch": 6,
111
+ "min_dynamic_patch": 1,
112
+ "model_type": "internvl_chat",
113
+ "pad2square": false,
114
+ "ps_version": "v2",
115
+ "select_layer": -1,
116
+ "template": "skywork-r1v-chat",
117
+ "tie_word_embeddings": false,
118
+ "torch_dtype": "float16",
119
+ "transformers_version": null,
120
+ "use_backbone_lora": 0,
121
+ "use_llm_lora": 0,
122
+ "use_thumbnail": true,
123
+ "vision_config": {
124
+ "_attn_implementation_autoset": true,
125
+ "_name_or_path": "",
126
+ "add_cross_attention": false,
127
+ "architectures": [
128
+ "InternVisionModel"
129
+ ],
130
+ "attention_dropout": 0.0,
131
+ "bad_words_ids": null,
132
+ "begin_suppress_tokens": null,
133
+ "bos_token_id": null,
134
+ "chunk_size_feed_forward": 0,
135
+ "cross_attention_hidden_size": null,
136
+ "decoder_start_token_id": null,
137
+ "diversity_penalty": 0.0,
138
+ "do_sample": false,
139
+ "drop_path_rate": 0.1,
140
+ "dropout": 0.0,
141
+ "early_stopping": false,
142
+ "encoder_no_repeat_ngram_size": 0,
143
+ "eos_token_id": null,
144
+ "exponential_decay_length_penalty": null,
145
+ "finetuning_task": null,
146
+ "forced_bos_token_id": null,
147
+ "forced_eos_token_id": null,
148
+ "hidden_act": "gelu",
149
+ "hidden_size": 3200,
150
+ "id2label": {
151
+ "0": "LABEL_0",
152
+ "1": "LABEL_1"
153
+ },
154
+ "image_size": 448,
155
+ "initializer_factor": 0.1,
156
+ "initializer_range": 1e-10,
157
+ "intermediate_size": 12800,
158
+ "is_decoder": false,
159
+ "is_encoder_decoder": false,
160
+ "label2id": {
161
+ "LABEL_0": 0,
162
+ "LABEL_1": 1
163
+ },
164
+ "layer_norm_eps": 1e-06,
165
+ "length_penalty": 1.0,
166
+ "max_length": 20,
167
+ "min_length": 0,
168
+ "model_type": "",
169
+ "no_repeat_ngram_size": 0,
170
+ "norm_type": "rms_norm",
171
+ "num_attention_heads": 25,
172
+ "num_beam_groups": 1,
173
+ "num_beams": 1,
174
+ "num_channels": 3,
175
+ "num_hidden_layers": 45,
176
+ "num_return_sequences": 1,
177
+ "output_attentions": false,
178
+ "output_hidden_states": false,
179
+ "output_scores": false,
180
+ "pad_token_id": null,
181
+ "patch_size": 14,
182
+ "prefix": null,
183
+ "problem_type": null,
184
+ "pruned_heads": {},
185
+ "qk_normalization": true,
186
+ "qkv_bias": false,
187
+ "remove_invalid_values": false,
188
+ "repetition_penalty": 1.0,
189
+ "return_dict": true,
190
+ "return_dict_in_generate": false,
191
+ "sep_token_id": null,
192
+ "suppress_tokens": null,
193
+ "task_specific_params": null,
194
+ "temperature": 1.0,
195
+ "tf_legacy_loss": false,
196
+ "tie_encoder_decoder": false,
197
+ "tie_word_embeddings": true,
198
+ "tokenizer_class": null,
199
+ "top_k": 50,
200
+ "top_p": 1.0,
201
+ "torch_dtype": "bfloat16",
202
+ "torchscript": false,
203
+ "transformers_version": "4.46.3",
204
+ "typical_p": 1.0,
205
+ "use_bfloat16": true,
206
+ "use_flash_attn": false
207
+ }
208
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import os
8
+ from typing import Union
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+
16
+ class InternVisionConfig(PretrainedConfig):
17
+ r"""
18
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
+
21
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
22
+ documentation from [`PretrainedConfig`] for more information.
23
+
24
+ Args:
25
+ num_channels (`int`, *optional*, defaults to 3):
26
+ Number of color channels in the input images (e.g., 3 for RGB).
27
+ patch_size (`int`, *optional*, defaults to 14):
28
+ The size (resolution) of each patch.
29
+ image_size (`int`, *optional*, defaults to 224):
30
+ The size (resolution) of each image.
31
+ qkv_bias (`bool`, *optional*, defaults to `False`):
32
+ Whether to add a bias to the queries and values in the self-attention layers.
33
+ hidden_size (`int`, *optional*, defaults to 3200):
34
+ Dimensionality of the encoder layers and the pooler layer.
35
+ num_attention_heads (`int`, *optional*, defaults to 25):
36
+ Number of attention heads for each attention layer in the Transformer encoder.
37
+ intermediate_size (`int`, *optional*, defaults to 12800):
38
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
39
+ qk_normalization (`bool`, *optional*, defaults to `True`):
40
+ Whether to normalize the queries and keys in the self-attention layers.
41
+ num_hidden_layers (`int`, *optional*, defaults to 48):
42
+ Number of hidden layers in the Transformer encoder.
43
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
44
+ Whether to use flash attention mechanism.
45
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
48
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
49
+ The epsilon used by the layer normalization layers.
50
+ dropout (`float`, *optional*, defaults to 0.0):
51
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
52
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
53
+ Dropout rate for stochastic depth.
54
+ attention_dropout (`float`, *optional*, defaults to 0.0):
55
+ The dropout ratio for the attention probabilities.
56
+ initializer_range (`float`, *optional*, defaults to 0.02):
57
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
+ initializer_factor (`float`, *optional*, defaults to 0.1):
59
+ A factor for layer scale.
60
+ """
61
+
62
+ model_type = 'intern_vit_6b'
63
+
64
+ def __init__(
65
+ self,
66
+ num_channels=3,
67
+ patch_size=14,
68
+ image_size=224,
69
+ qkv_bias=False,
70
+ hidden_size=3200,
71
+ num_attention_heads=25,
72
+ intermediate_size=12800,
73
+ qk_normalization=True,
74
+ num_hidden_layers=48,
75
+ use_flash_attn=True,
76
+ hidden_act='gelu',
77
+ norm_type='rms_norm',
78
+ layer_norm_eps=1e-6,
79
+ dropout=0.0,
80
+ drop_path_rate=0.0,
81
+ attention_dropout=0.0,
82
+ initializer_range=0.02,
83
+ initializer_factor=0.1,
84
+ **kwargs,
85
+ ):
86
+ super().__init__(**kwargs)
87
+
88
+ self.hidden_size = hidden_size
89
+ self.intermediate_size = intermediate_size
90
+ self.dropout = dropout
91
+ self.drop_path_rate = drop_path_rate
92
+ self.num_hidden_layers = num_hidden_layers
93
+ self.num_attention_heads = num_attention_heads
94
+ self.num_channels = num_channels
95
+ self.patch_size = patch_size
96
+ self.image_size = image_size
97
+ self.initializer_range = initializer_range
98
+ self.initializer_factor = initializer_factor
99
+ self.attention_dropout = attention_dropout
100
+ self.layer_norm_eps = layer_norm_eps
101
+ self.hidden_act = hidden_act
102
+ self.norm_type = norm_type
103
+ self.qkv_bias = qkv_bias
104
+ self.qk_normalization = qk_normalization
105
+ self.use_flash_attn = use_flash_attn
106
+
107
+ @classmethod
108
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
109
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
110
+
111
+ if 'vision_config' in config_dict:
112
+ config_dict = config_dict['vision_config']
113
+
114
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
115
+ logger.warning(
116
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
117
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
118
+ )
119
+
120
+ return cls.from_dict(config_dict, **kwargs)
configuration_internlm2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ InternLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
27
+ class InternLM2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = 'internlm2'
75
+ _auto_class = 'AutoConfig'
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act='silu',
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation='eager',
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = 'eager'
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
141
+ f'got {self.rope_scaling}'
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get('type', None)
144
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
configuration_internvl_chat.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+ from .configuration_internlm2 import InternLM2Config
15
+ from transformers import Qwen2Config, Qwen2ForCausalLM
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+
20
+ class InternVLChatConfig(PretrainedConfig):
21
+ model_type = 'internvl_chat'
22
+ is_composition = True
23
+
24
+ def __init__(
25
+ self,
26
+ vision_config=None,
27
+ llm_config=None,
28
+ use_backbone_lora=0,
29
+ use_llm_lora=0,
30
+ select_layer=-1,
31
+ force_image_size=None,
32
+ downsample_ratio=0.5,
33
+ template=None,
34
+ dynamic_image_size=False,
35
+ use_thumbnail=False,
36
+ ps_version='v1',
37
+ min_dynamic_patch=1,
38
+ max_dynamic_patch=6,
39
+ **kwargs):
40
+ super().__init__(**kwargs)
41
+ if vision_config is None:
42
+ vision_config = {'architectures': ['InternVisionModel']}
43
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
44
+
45
+ if llm_config is None:
46
+ llm_config = {'architectures': ['Qwen2ForCausalLM']}
47
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
48
+
49
+ self.vision_config = InternVisionConfig(**vision_config)
50
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
51
+ self.llm_config = LlamaConfig(**llm_config)
52
+ elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
53
+ self.llm_config = Qwen2Config(**llm_config)
54
+ else:
55
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
56
+
57
+ # if vision_config is None:
58
+ # vision_config = {}
59
+ # logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
60
+
61
+ # if llm_config is None:
62
+ # llm_config = {}
63
+ # logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
64
+
65
+ # self.vision_config = InternVisionConfig(**vision_config)
66
+ # if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
67
+ # self.llm_config = LlamaConfig(**llm_config)
68
+ # elif llm_config.get('architectures')[0] == 'InternLM2ForCausalLM':
69
+ # self.llm_config = InternLM2Config(**llm_config)
70
+ # else:
71
+ # raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
72
+ self.use_backbone_lora = use_backbone_lora
73
+ self.use_llm_lora = use_llm_lora
74
+ self.select_layer = select_layer
75
+ self.force_image_size = force_image_size
76
+ self.downsample_ratio = downsample_ratio
77
+ self.template = template
78
+ self.dynamic_image_size = dynamic_image_size
79
+ self.use_thumbnail = use_thumbnail
80
+ self.ps_version = ps_version # pixel shuffle version
81
+ self.min_dynamic_patch = min_dynamic_patch
82
+ self.max_dynamic_patch = max_dynamic_patch
83
+
84
+ logger.info(f'vision_select_layer: {self.select_layer}')
85
+ logger.info(f'ps_version: {self.ps_version}')
86
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
87
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
88
+
89
+ def to_dict(self):
90
+ """
91
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
92
+
93
+ Returns:
94
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
95
+ """
96
+ output = copy.deepcopy(self.__dict__)
97
+ output['vision_config'] = self.vision_config.to_dict()
98
+ output['llm_config'] = self.llm_config.to_dict()
99
+ output['model_type'] = self.__class__.model_type
100
+ output['use_backbone_lora'] = self.use_backbone_lora
101
+ output['use_llm_lora'] = self.use_llm_lora
102
+ output['select_layer'] = self.select_layer
103
+ output['force_image_size'] = self.force_image_size
104
+ output['downsample_ratio'] = self.downsample_ratio
105
+ output['template'] = self.template
106
+ output['dynamic_image_size'] = self.dynamic_image_size
107
+ output['use_thumbnail'] = self.use_thumbnail
108
+ output['ps_version'] = self.ps_version
109
+ output['min_dynamic_patch'] = self.min_dynamic_patch
110
+ output['max_dynamic_patch'] = self.max_dynamic_patch
111
+
112
+ return output
configuration_skywork_chat.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+
3
+ from transformers import AutoConfig, LlamaConfig
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+
7
+ from .configuration_skywork_vit import SkyworkVisionConfig
8
+ from .configuration_skywork_lm2 import SkyworkLM2Config
9
+ from transformers import Qwen2Config, Qwen2ForCausalLM
10
+
11
+ logger = logging.get_logger(__name__)
12
+
13
+
14
+ class SkyworkChatConfig(PretrainedConfig):
15
+ model_type = 'skywork_chat'
16
+ is_composition = True
17
+
18
+ def __init__(
19
+ self,
20
+ vision_config=None,
21
+ llm_config=None,
22
+ use_backbone_lora=0,
23
+ use_llm_lora=0,
24
+ select_layer=-1,
25
+ force_image_size=None,
26
+ downsample_ratio=0.5,
27
+ template=None,
28
+ dynamic_image_size=False,
29
+ use_thumbnail=False,
30
+ ps_version='v1',
31
+ min_dynamic_patch=1,
32
+ max_dynamic_patch=6,
33
+ **kwargs):
34
+ super().__init__(**kwargs)
35
+ if vision_config is None:
36
+ vision_config = {'architectures': ['SkyworkVisionModel']}
37
+ logger.info('vision_config is None. Initializing the SkyworkVisionConfig with default values.')
38
+
39
+ if llm_config is None:
40
+ llm_config = {'architectures': ['Qwen2ForCausalLM']}
41
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
42
+
43
+ self.vision_config = SkyworkVisionConfig(**vision_config)
44
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
45
+ self.llm_config = LlamaConfig(**llm_config)
46
+ elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
47
+ self.llm_config = Qwen2Config(**llm_config)
48
+ else:
49
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
50
+
51
+
52
+ self.use_backbone_lora = use_backbone_lora
53
+ self.use_llm_lora = use_llm_lora
54
+ self.select_layer = select_layer
55
+ self.force_image_size = force_image_size
56
+ self.downsample_ratio = downsample_ratio
57
+ self.template = template
58
+ self.dynamic_image_size = dynamic_image_size
59
+ self.use_thumbnail = use_thumbnail
60
+ self.ps_version = ps_version # pixel shuffle version
61
+ self.min_dynamic_patch = min_dynamic_patch
62
+ self.max_dynamic_patch = max_dynamic_patch
63
+
64
+ logger.info(f'vision_select_layer: {self.select_layer}')
65
+ logger.info(f'ps_version: {self.ps_version}')
66
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
67
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
68
+
69
+ def to_dict(self):
70
+ """
71
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
72
+ Returns:
73
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
74
+ """
75
+ output = copy.deepcopy(self.__dict__)
76
+ output['vision_config'] = self.vision_config.to_dict()
77
+ output['llm_config'] = self.llm_config.to_dict()
78
+ output['model_type'] = self.__class__.model_type
79
+ output['use_backbone_lora'] = self.use_backbone_lora
80
+ output['use_llm_lora'] = self.use_llm_lora
81
+ output['select_layer'] = self.select_layer
82
+ output['force_image_size'] = self.force_image_size
83
+ output['downsample_ratio'] = self.downsample_ratio
84
+ output['template'] = self.template
85
+ output['dynamic_image_size'] = self.dynamic_image_size
86
+ output['use_thumbnail'] = self.use_thumbnail
87
+ output['ps_version'] = self.ps_version
88
+ output['min_dynamic_patch'] = self.min_dynamic_patch
89
+ output['max_dynamic_patch'] = self.max_dynamic_patch
90
+
91
+ return output
configuration_skywork_lm2.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The Skywork team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ SkyworkLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
25
+ class SkyworkLM2Config(PretrainedConfig):
26
+ r"""
27
+ Args:
28
+ vocab_size (`int`, *optional*, defaults to 32000):
29
+ Vocabulary size of the SkyworkLM2 model. Defines the number of different tokens that can be represented by the
30
+ `inputs_ids` passed when calling [`SkyworkLM2Model`]
31
+ hidden_size (`int`, *optional*, defaults to 4096):
32
+ Dimension of the hidden representations.
33
+ intermediate_size (`int`, *optional*, defaults to 11008):
34
+ Dimension of the MLP representations.
35
+ num_hidden_layers (`int`, *optional*, defaults to 32):
36
+ Number of hidden layers in the Transformer encoder.
37
+ num_attention_heads (`int`, *optional*, defaults to 32):
38
+ Number of attention heads for each attention layer in the Transformer encoder.
39
+ num_key_value_heads (`int`, *optional*):
40
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
41
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
42
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
43
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
44
+ by meanpooling all the original heads within that group. For more details checkout [this
45
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
46
+ `num_attention_heads`.
47
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
48
+ The non-linear activation function (function or string) in the decoder.
49
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
50
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
51
+ just in case (e.g., 512 or 1024 or 2048).
52
+ initializer_range (`float`, *optional*, defaults to 0.02):
53
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
54
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
55
+ The epsilon used by the rms normalization layers.
56
+ use_cache (`bool`, *optional*, defaults to `True`):
57
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
58
+ relevant if `config.is_decoder=True`.
59
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
60
+ Whether to tie weight embeddings
61
+ Example:
62
+ """
63
+ _auto_class = 'AutoConfig'
64
+
65
+ def __init__(
66
+ self,
67
+ vocab_size=103168,
68
+ hidden_size=4096,
69
+ intermediate_size=11008,
70
+ num_hidden_layers=32,
71
+ num_attention_heads=32,
72
+ num_key_value_heads=None,
73
+ hidden_act='silu',
74
+ max_position_embeddings=2048,
75
+ initializer_range=0.02,
76
+ rms_norm_eps=1e-6,
77
+ use_cache=True,
78
+ pad_token_id=0,
79
+ bos_token_id=1,
80
+ eos_token_id=2,
81
+ tie_word_embeddings=False,
82
+ bias=True,
83
+ rope_theta=10000,
84
+ rope_scaling=None,
85
+ attn_implementation='eager',
86
+ **kwargs,
87
+ ):
88
+ self.vocab_size = vocab_size
89
+ self.max_position_embeddings = max_position_embeddings
90
+ self.hidden_size = hidden_size
91
+ self.intermediate_size = intermediate_size
92
+ self.num_hidden_layers = num_hidden_layers
93
+ self.num_attention_heads = num_attention_heads
94
+ self.bias = bias
95
+
96
+ if num_key_value_heads is None:
97
+ num_key_value_heads = num_attention_heads
98
+ self.num_key_value_heads = num_key_value_heads
99
+
100
+ self.hidden_act = hidden_act
101
+ self.initializer_range = initializer_range
102
+ self.rms_norm_eps = rms_norm_eps
103
+ self.use_cache = use_cache
104
+ self.rope_theta = rope_theta
105
+ self.rope_scaling = rope_scaling
106
+ self._rope_scaling_validation()
107
+
108
+ self.attn_implementation = attn_implementation
109
+ if self.attn_implementation is None:
110
+ self.attn_implementation = 'eager'
111
+ super().__init__(
112
+ pad_token_id=pad_token_id,
113
+ bos_token_id=bos_token_id,
114
+ eos_token_id=eos_token_id,
115
+ tie_word_embeddings=tie_word_embeddings,
116
+ **kwargs,
117
+ )
118
+
119
+ def _rope_scaling_validation(self):
120
+ """
121
+ Validate the `rope_scaling` configuration.
122
+ """
123
+ if self.rope_scaling is None:
124
+ return
125
+
126
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
127
+ raise ValueError(
128
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
129
+ f'got {self.rope_scaling}'
130
+ )
131
+ rope_scaling_type = self.rope_scaling.get('type', None)
132
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
133
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
134
+ raise ValueError(
135
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
136
+ )
137
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
138
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
configuration_skywork_vit.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Union
3
+
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+
7
+ logger = logging.get_logger(__name__)
8
+
9
+
10
+ class SkyworkVisionConfig(PretrainedConfig):
11
+ r"""
12
+ Args:
13
+ num_channels (`int`, *optional*, defaults to 3):
14
+ Number of color channels in the input images (e.g., 3 for RGB).
15
+ patch_size (`int`, *optional*, defaults to 14):
16
+ The size (resolution) of each patch.
17
+ image_size (`int`, *optional*, defaults to 224):
18
+ The size (resolution) of each image.
19
+ qkv_bias (`bool`, *optional*, defaults to `False`):
20
+ Whether to add a bias to the queries and values in the self-attention layers.
21
+ hidden_size (`int`, *optional*, defaults to 3200):
22
+ Dimensionality of the encoder layers and the pooler layer.
23
+ num_attention_heads (`int`, *optional*, defaults to 25):
24
+ Number of attention heads for each attention layer in the Transformer encoder.
25
+ intermediate_size (`int`, *optional*, defaults to 12800):
26
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
27
+ qk_normalization (`bool`, *optional*, defaults to `True`):
28
+ Whether to normalize the queries and keys in the self-attention layers.
29
+ num_hidden_layers (`int`, *optional*, defaults to 48):
30
+ Number of hidden layers in the Transformer encoder.
31
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
32
+ Whether to use flash attention mechanism.
33
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
34
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
35
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
36
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
37
+ The epsilon used by the layer normalization layers.
38
+ dropout (`float`, *optional*, defaults to 0.0):
39
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
40
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
41
+ Dropout rate for stochastic depth.
42
+ attention_dropout (`float`, *optional*, defaults to 0.0):
43
+ The dropout ratio for the attention probabilities.
44
+ initializer_range (`float`, *optional*, defaults to 0.02):
45
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
46
+ initializer_factor (`float`, *optional*, defaults to 0.1):
47
+ A factor for layer scale.
48
+ """
49
+
50
+
51
+ def __init__(
52
+ self,
53
+ num_channels=3,
54
+ patch_size=14,
55
+ image_size=224,
56
+ qkv_bias=False,
57
+ hidden_size=3200,
58
+ num_attention_heads=25,
59
+ intermediate_size=12800,
60
+ qk_normalization=True,
61
+ num_hidden_layers=48,
62
+ use_flash_attn=True,
63
+ hidden_act='gelu',
64
+ norm_type='rms_norm',
65
+ layer_norm_eps=1e-6,
66
+ dropout=0.0,
67
+ drop_path_rate=0.0,
68
+ attention_dropout=0.0,
69
+ initializer_range=0.02,
70
+ initializer_factor=0.1,
71
+ **kwargs,
72
+ ):
73
+ super().__init__(**kwargs)
74
+
75
+ self.hidden_size = hidden_size
76
+ self.intermediate_size = intermediate_size
77
+ self.dropout = dropout
78
+ self.drop_path_rate = drop_path_rate
79
+ self.num_hidden_layers = num_hidden_layers
80
+ self.num_attention_heads = num_attention_heads
81
+ self.num_channels = num_channels
82
+ self.patch_size = patch_size
83
+ self.image_size = image_size
84
+ self.initializer_range = initializer_range
85
+ self.initializer_factor = initializer_factor
86
+ self.attention_dropout = attention_dropout
87
+ self.layer_norm_eps = layer_norm_eps
88
+ self.hidden_act = hidden_act
89
+ self.norm_type = norm_type
90
+ self.qkv_bias = qkv_bias
91
+ self.qk_normalization = qk_normalization
92
+ self.use_flash_attn = use_flash_attn
93
+
94
+ @classmethod
95
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
96
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
97
+
98
+ if 'vision_config' in config_dict:
99
+ config_dict = config_dict['vision_config']
100
+
101
+ return cls.from_dict(config_dict, **kwargs)
conversation.py ADDED
@@ -0,0 +1,343 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+
7
+ Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
8
+ """
9
+
10
+ import dataclasses
11
+ from enum import IntEnum, auto
12
+ from typing import Dict, List, Tuple, Union
13
+
14
+
15
+ class SeparatorStyle(IntEnum):
16
+ """Separator styles."""
17
+
18
+ ADD_COLON_SINGLE = auto()
19
+ ADD_COLON_TWO = auto()
20
+ ADD_COLON_SPACE_SINGLE = auto()
21
+ NO_COLON_SINGLE = auto()
22
+ NO_COLON_TWO = auto()
23
+ ADD_NEW_LINE_SINGLE = auto()
24
+ LLAMA2 = auto()
25
+ CHATGLM = auto()
26
+ CHATML = auto()
27
+ CHATINTERN = auto()
28
+ DOLLY = auto()
29
+ RWKV = auto()
30
+ PHOENIX = auto()
31
+ ROBIN = auto()
32
+ FALCON_CHAT = auto()
33
+ CHATGLM3 = auto()
34
+ INTERNVL_ZH = auto()
35
+ MPT = auto()
36
+
37
+
38
+ @dataclasses.dataclass
39
+ class Conversation:
40
+ """A class that manages prompt templates and keeps all conversation history."""
41
+
42
+ # The name of this template
43
+ name: str
44
+ # The template of the system prompt
45
+ system_template: str = '{system_message}'
46
+ # The system message
47
+ system_message: str = ''
48
+ # The names of two roles
49
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
50
+ # All messages. Each item is (role, message).
51
+ messages: List[List[str]] = ()
52
+ # The number of few shot examples
53
+ offset: int = 0
54
+ # The separator style and configurations
55
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
56
+ sep: str = '\n'
57
+ sep2: str = None
58
+ # Stop criteria (the default one is EOS token)
59
+ stop_str: Union[str, List[str]] = None
60
+ # Stops generation if meeting any token in this list
61
+ stop_token_ids: List[int] = None
62
+
63
+ def get_prompt(self) -> str:
64
+ """Get the prompt for generation."""
65
+ system_prompt = self.system_template.format(system_message=self.system_message)
66
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
67
+ ret = system_prompt + self.sep
68
+ for role, message in self.messages:
69
+ if message:
70
+ ret += role + ': ' + message + self.sep
71
+ else:
72
+ ret += role + ':'
73
+ return ret
74
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
75
+ seps = [self.sep, self.sep2]
76
+ ret = system_prompt + seps[0]
77
+ for i, (role, message) in enumerate(self.messages):
78
+ if message:
79
+ ret += role + ': ' + message + seps[i % 2]
80
+ else:
81
+ ret += role + ':'
82
+ return ret
83
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
84
+ ret = system_prompt + self.sep
85
+ for role, message in self.messages:
86
+ if message:
87
+ ret += role + ': ' + message + self.sep
88
+ else:
89
+ ret += role + ': ' # must be end with a space
90
+ return ret
91
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
92
+ ret = '' if system_prompt == '' else system_prompt + self.sep
93
+ for role, message in self.messages:
94
+ if message:
95
+ ret += role + '\n' + message + self.sep
96
+ else:
97
+ ret += role + '\n'
98
+ return ret
99
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
100
+ ret = system_prompt
101
+ for role, message in self.messages:
102
+ if message:
103
+ ret += role + message + self.sep
104
+ else:
105
+ ret += role
106
+ return ret
107
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
108
+ seps = [self.sep, self.sep2]
109
+ ret = system_prompt
110
+ for i, (role, message) in enumerate(self.messages):
111
+ if message:
112
+ ret += role + message + seps[i % 2]
113
+ else:
114
+ ret += role
115
+ return ret
116
+ elif self.sep_style == SeparatorStyle.RWKV:
117
+ ret = system_prompt
118
+ for i, (role, message) in enumerate(self.messages):
119
+ if message:
120
+ ret += (
121
+ role
122
+ + ': '
123
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
124
+ )
125
+ ret += '\n\n'
126
+ else:
127
+ ret += role + ':'
128
+ return ret
129
+ elif self.sep_style == SeparatorStyle.LLAMA2:
130
+ seps = [self.sep, self.sep2]
131
+ if self.system_message:
132
+ ret = system_prompt
133
+ else:
134
+ ret = '[INST] '
135
+ for i, (role, message) in enumerate(self.messages):
136
+ tag = self.roles[i % 2]
137
+ if message:
138
+ if i == 0:
139
+ ret += message + ' '
140
+ else:
141
+ ret += tag + ' ' + message + seps[i % 2]
142
+ else:
143
+ ret += tag
144
+ return ret
145
+ elif self.sep_style == SeparatorStyle.CHATGLM:
146
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
147
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
148
+ round_add_n = 1 if self.name == 'chatglm2' else 0
149
+ if system_prompt:
150
+ ret = system_prompt + self.sep
151
+ else:
152
+ ret = ''
153
+
154
+ for i, (role, message) in enumerate(self.messages):
155
+ if i % 2 == 0:
156
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
157
+
158
+ if message:
159
+ ret += f'{role}:{message}{self.sep}'
160
+ else:
161
+ ret += f'{role}:'
162
+ return ret
163
+ elif self.sep_style == SeparatorStyle.CHATML:
164
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
165
+ for role, message in self.messages:
166
+ if message:
167
+ ret += role + '\n' + message + self.sep + '\n'
168
+ else:
169
+ ret += role + '\n'
170
+ return ret
171
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
172
+ ret = ''
173
+ if self.system_message:
174
+ ret += system_prompt
175
+ for role, message in self.messages:
176
+ if message:
177
+ ret += role + '\n' + ' ' + message
178
+ else:
179
+ ret += role
180
+ return ret
181
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
182
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
183
+ seps = [self.sep, self.sep2]
184
+ ret = system_prompt
185
+ for i, (role, message) in enumerate(self.messages):
186
+ # if i % 2 == 0:
187
+ # ret += "<s>"
188
+ if message:
189
+ ret += role + ':' + message + seps[i % 2] + '\n'
190
+ else:
191
+ ret += role + ':'
192
+ return ret
193
+ elif self.sep_style == SeparatorStyle.DOLLY:
194
+ seps = [self.sep, self.sep2]
195
+ ret = system_prompt
196
+ for i, (role, message) in enumerate(self.messages):
197
+ if message:
198
+ ret += role + ':\n' + message + seps[i % 2]
199
+ if i % 2 == 1:
200
+ ret += '\n\n'
201
+ else:
202
+ ret += role + ':\n'
203
+ return ret
204
+ elif self.sep_style == SeparatorStyle.PHOENIX:
205
+ ret = system_prompt
206
+ for role, message in self.messages:
207
+ if message:
208
+ ret += role + ': ' + '<s>' + message + '</s>'
209
+ else:
210
+ ret += role + ': ' + '<s>'
211
+ return ret
212
+ elif self.sep_style == SeparatorStyle.ROBIN:
213
+ ret = system_prompt + self.sep
214
+ for role, message in self.messages:
215
+ if message:
216
+ ret += role + ':\n' + message + self.sep
217
+ else:
218
+ ret += role + ':\n'
219
+ return ret
220
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
221
+ ret = ''
222
+ if self.system_message:
223
+ ret += system_prompt + self.sep
224
+ for role, message in self.messages:
225
+ if message:
226
+ ret += role + ': ' + message + self.sep
227
+ else:
228
+ ret += role + ':'
229
+
230
+ return ret
231
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
232
+ seps = [self.sep, self.sep2]
233
+ ret = self.system_message + seps[0]
234
+ for i, (role, message) in enumerate(self.messages):
235
+ if message:
236
+ ret += role + ': ' + message + seps[i % 2]
237
+ else:
238
+ ret += role + ':'
239
+ return ret
240
+ elif self.sep_style == SeparatorStyle.MPT:
241
+ ret = system_prompt + self.sep
242
+ for role, message in self.messages:
243
+ if message:
244
+ if type(message) is tuple:
245
+ message, _, _ = message
246
+ ret += role + message + self.sep
247
+ else:
248
+ ret += role
249
+ return ret
250
+ else:
251
+ raise ValueError(f'Invalid style: {self.sep_style}')
252
+
253
+ def set_system_message(self, system_message: str):
254
+ """Set the system message."""
255
+ self.system_message = system_message
256
+
257
+ def append_message(self, role: str, message: str):
258
+ """Append a new message."""
259
+ self.messages.append([role, message])
260
+
261
+ def update_last_message(self, message: str):
262
+ """Update the last output.
263
+
264
+ The last message is typically set to be None when constructing the prompt,
265
+ so we need to update it in-place after getting the response from a model.
266
+ """
267
+ self.messages[-1][1] = message
268
+
269
+ def to_gradio_chatbot(self):
270
+ """Convert the conversation to gradio chatbot format."""
271
+ ret = []
272
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
273
+ if i % 2 == 0:
274
+ ret.append([msg, None])
275
+ else:
276
+ ret[-1][-1] = msg
277
+ return ret
278
+
279
+ def to_openai_api_messages(self):
280
+ """Convert the conversation to OpenAI chat completion format."""
281
+ ret = [{'role': 'system', 'content': self.system_message}]
282
+
283
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
284
+ if i % 2 == 0:
285
+ ret.append({'role': 'user', 'content': msg})
286
+ else:
287
+ if msg is not None:
288
+ ret.append({'role': 'assistant', 'content': msg})
289
+ return ret
290
+
291
+ def copy(self):
292
+ return Conversation(
293
+ name=self.name,
294
+ system_template=self.system_template,
295
+ system_message=self.system_message,
296
+ roles=self.roles,
297
+ messages=[[x, y] for x, y in self.messages],
298
+ offset=self.offset,
299
+ sep_style=self.sep_style,
300
+ sep=self.sep,
301
+ sep2=self.sep2,
302
+ stop_str=self.stop_str,
303
+ stop_token_ids=self.stop_token_ids,
304
+ )
305
+
306
+ def dict(self):
307
+ return {
308
+ 'template_name': self.name,
309
+ 'system_message': self.system_message,
310
+ 'roles': self.roles,
311
+ 'messages': self.messages,
312
+ 'offset': self.offset,
313
+ }
314
+
315
+
316
+ # A global registry for all conversation templates
317
+ conv_templates: Dict[str, Conversation] = {}
318
+
319
+
320
+ def register_conv_template(template: Conversation, override: bool = False):
321
+ """Register a new conversation template."""
322
+ if not override:
323
+ assert (
324
+ template.name not in conv_templates
325
+ ), f'{template.name} has been registered.'
326
+
327
+ conv_templates[template.name] = template
328
+
329
+
330
+ def get_conv_template(name: str) -> Conversation:
331
+ """Get a conversation template."""
332
+ return conv_templates[name].copy()
333
+
334
+ register_conv_template(
335
+ Conversation(
336
+ name='skywork-r1v-chat',
337
+ system_template='<|im_start|>system\n{system_message}',
338
+ system_message='You are a helpful assistant.',
339
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n<think>\n'),
340
+ sep_style=SeparatorStyle.MPT,
341
+ sep='<|im_end|>\n',
342
+ )
343
+ )
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.37.2"
4
+ }
inputs_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45fbe7ecac8f78ace7597349f23866d359a0c3c5fbe8bf5b1ef9ca37b0ceb5b7
3
+ size 37987294
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modeling_intern_vit.py ADDED
@@ -0,0 +1,430 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ from typing import Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint
12
+ from einops import rearrange
13
+ from timm.models.layers import DropPath
14
+ from torch import nn
15
+ from transformers.activations import ACT2FN
16
+ from transformers.modeling_outputs import (BaseModelOutput,
17
+ BaseModelOutputWithPooling)
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import logging
20
+
21
+ from .configuration_intern_vit import InternVisionConfig
22
+
23
+ try:
24
+ from flash_attn.bert_padding import pad_input, unpad_input
25
+ from flash_attn.flash_attn_interface import \
26
+ flash_attn_varlen_qkvpacked_func
27
+ has_flash_attn = True
28
+ except:
29
+ print('FlashAttention2 is not installed.')
30
+ has_flash_attn = False
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ class FlashAttention(nn.Module):
36
+ """Implement the scaled dot product attention with softmax.
37
+ Arguments
38
+ ---------
39
+ softmax_scale: The temperature to use for the softmax attention.
40
+ (default: 1/sqrt(d_keys) where d_keys is computed at
41
+ runtime)
42
+ attention_dropout: The dropout rate to apply to the attention
43
+ (default: 0.0)
44
+ """
45
+
46
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
47
+ super().__init__()
48
+ self.softmax_scale = softmax_scale
49
+ self.dropout_p = attention_dropout
50
+
51
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
52
+ max_s=None, need_weights=False):
53
+ """Implements the multihead softmax attention.
54
+ Arguments
55
+ ---------
56
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
57
+ if unpadded: (nnz, 3, h, d)
58
+ key_padding_mask: a bool tensor of shape (B, S)
59
+ """
60
+ assert not need_weights
61
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
62
+ assert qkv.is_cuda
63
+
64
+ if cu_seqlens is None:
65
+ batch_size = qkv.shape[0]
66
+ seqlen = qkv.shape[1]
67
+ if key_padding_mask is None:
68
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
69
+ max_s = seqlen
70
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
71
+ device=qkv.device)
72
+ output = flash_attn_varlen_qkvpacked_func(
73
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
74
+ softmax_scale=self.softmax_scale, causal=causal
75
+ )
76
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
77
+ else:
78
+ nheads = qkv.shape[-2]
79
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
80
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
81
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
82
+ output_unpad = flash_attn_varlen_qkvpacked_func(
83
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
84
+ softmax_scale=self.softmax_scale, causal=causal
85
+ )
86
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
87
+ indices, batch_size, seqlen),
88
+ 'b s (h d) -> b s h d', h=nheads)
89
+ else:
90
+ assert max_s is not None
91
+ output = flash_attn_varlen_qkvpacked_func(
92
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
93
+ softmax_scale=self.softmax_scale, causal=causal
94
+ )
95
+
96
+ return output, None
97
+
98
+
99
+ class InternRMSNorm(nn.Module):
100
+ def __init__(self, hidden_size, eps=1e-6):
101
+ super().__init__()
102
+ self.weight = nn.Parameter(torch.ones(hidden_size))
103
+ self.variance_epsilon = eps
104
+
105
+ def forward(self, hidden_states):
106
+ input_dtype = hidden_states.dtype
107
+ hidden_states = hidden_states.to(torch.float32)
108
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
109
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
110
+ return self.weight * hidden_states.to(input_dtype)
111
+
112
+
113
+ try:
114
+ from apex.normalization import FusedRMSNorm
115
+
116
+ InternRMSNorm = FusedRMSNorm # noqa
117
+
118
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
119
+ except ImportError:
120
+ # using the normal InternRMSNorm
121
+ pass
122
+ except Exception:
123
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
124
+ pass
125
+
126
+
127
+ NORM2FN = {
128
+ 'rms_norm': InternRMSNorm,
129
+ 'layer_norm': nn.LayerNorm,
130
+ }
131
+
132
+
133
+ class InternVisionEmbeddings(nn.Module):
134
+ def __init__(self, config: InternVisionConfig):
135
+ super().__init__()
136
+ self.config = config
137
+ self.embed_dim = config.hidden_size
138
+ self.image_size = config.image_size
139
+ self.patch_size = config.patch_size
140
+
141
+ self.class_embedding = nn.Parameter(
142
+ torch.randn(1, 1, self.embed_dim),
143
+ )
144
+
145
+ self.patch_embedding = nn.Conv2d(
146
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
147
+ )
148
+
149
+ self.num_patches = (self.image_size // self.patch_size) ** 2
150
+ self.num_positions = self.num_patches + 1
151
+
152
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
153
+
154
+ def _get_pos_embed(self, pos_embed, H, W):
155
+ target_dtype = pos_embed.dtype
156
+ pos_embed = pos_embed.float().reshape(
157
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
158
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
159
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
160
+ return pos_embed
161
+
162
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
163
+ target_dtype = self.patch_embedding.weight.dtype
164
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
165
+ batch_size, _, height, width = patch_embeds.shape
166
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
167
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
168
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
169
+ position_embedding = torch.cat([
170
+ self.position_embedding[:, :1, :],
171
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
172
+ ], dim=1)
173
+ embeddings = embeddings + position_embedding.to(target_dtype)
174
+ return embeddings
175
+
176
+
177
+ class InternAttention(nn.Module):
178
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
179
+
180
+ def __init__(self, config: InternVisionConfig):
181
+ super().__init__()
182
+ self.config = config
183
+ self.embed_dim = config.hidden_size
184
+ self.num_heads = config.num_attention_heads
185
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
186
+ if config.use_flash_attn and not has_flash_attn:
187
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
188
+ self.head_dim = self.embed_dim // self.num_heads
189
+ if self.head_dim * self.num_heads != self.embed_dim:
190
+ raise ValueError(
191
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
192
+ f' {self.num_heads}).'
193
+ )
194
+
195
+ self.scale = self.head_dim ** -0.5
196
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
197
+ self.attn_drop = nn.Dropout(config.attention_dropout)
198
+ self.proj_drop = nn.Dropout(config.dropout)
199
+
200
+ self.qk_normalization = config.qk_normalization
201
+
202
+ if self.qk_normalization:
203
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
205
+
206
+ if self.use_flash_attn:
207
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
208
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
209
+
210
+ def _naive_attn(self, x):
211
+ B, N, C = x.shape
212
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
213
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
214
+
215
+ if self.qk_normalization:
216
+ B_, H_, N_, D_ = q.shape
217
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
219
+
220
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
221
+ attn = attn.softmax(dim=-1)
222
+ attn = self.attn_drop(attn)
223
+
224
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
225
+ x = self.proj(x)
226
+ x = self.proj_drop(x)
227
+ return x
228
+
229
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
230
+ qkv = self.qkv(x)
231
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
232
+
233
+ if self.qk_normalization:
234
+ q, k, v = qkv.unbind(2)
235
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
236
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
237
+ qkv = torch.stack([q, k, v], dim=2)
238
+
239
+ context, _ = self.inner_attn(
240
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
241
+ )
242
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
243
+ outs = self.proj_drop(outs)
244
+ return outs
245
+
246
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
248
+ return x
249
+
250
+
251
+ class InternMLP(nn.Module):
252
+ def __init__(self, config: InternVisionConfig):
253
+ super().__init__()
254
+ self.config = config
255
+ self.act = ACT2FN[config.hidden_act]
256
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
257
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
258
+
259
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
260
+ hidden_states = self.fc1(hidden_states)
261
+ hidden_states = self.act(hidden_states)
262
+ hidden_states = self.fc2(hidden_states)
263
+ return hidden_states
264
+
265
+
266
+ class InternVisionEncoderLayer(nn.Module):
267
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
268
+ super().__init__()
269
+ self.embed_dim = config.hidden_size
270
+ self.intermediate_size = config.intermediate_size
271
+ self.norm_type = config.norm_type
272
+
273
+ self.attn = InternAttention(config)
274
+ self.mlp = InternMLP(config)
275
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
277
+
278
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
280
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
282
+
283
+ def forward(
284
+ self,
285
+ hidden_states: torch.Tensor,
286
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
287
+ """
288
+ Args:
289
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
290
+ """
291
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
292
+
293
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
294
+
295
+ return hidden_states
296
+
297
+
298
+ class InternVisionEncoder(nn.Module):
299
+ """
300
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
301
+ [`InternEncoderLayer`].
302
+
303
+ Args:
304
+ config (`InternConfig`):
305
+ The corresponding vision configuration for the `InternEncoder`.
306
+ """
307
+
308
+ def __init__(self, config: InternVisionConfig):
309
+ super().__init__()
310
+ self.config = config
311
+ # stochastic depth decay rule
312
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
313
+ self.layers = nn.ModuleList([
314
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
315
+ self.gradient_checkpointing = True
316
+
317
+ def forward(
318
+ self,
319
+ inputs_embeds,
320
+ output_hidden_states: Optional[bool] = None,
321
+ return_dict: Optional[bool] = None,
322
+ ) -> Union[Tuple, BaseModelOutput]:
323
+ r"""
324
+ Args:
325
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
326
+ Embedded representation of the inputs. Should be float, not int tokens.
327
+ output_hidden_states (`bool`, *optional*):
328
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
329
+ for more detail.
330
+ return_dict (`bool`, *optional*):
331
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
332
+ """
333
+ output_hidden_states = (
334
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
335
+ )
336
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
+
338
+ encoder_states = () if output_hidden_states else None
339
+ hidden_states = inputs_embeds
340
+
341
+ for idx, encoder_layer in enumerate(self.layers):
342
+ if output_hidden_states:
343
+ encoder_states = encoder_states + (hidden_states,)
344
+ if self.gradient_checkpointing and self.training:
345
+ layer_outputs = torch.utils.checkpoint.checkpoint(
346
+ encoder_layer,
347
+ hidden_states)
348
+ else:
349
+ layer_outputs = encoder_layer(
350
+ hidden_states,
351
+ )
352
+ hidden_states = layer_outputs
353
+
354
+ if output_hidden_states:
355
+ encoder_states = encoder_states + (hidden_states,)
356
+
357
+ if not return_dict:
358
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
359
+ return BaseModelOutput(
360
+ last_hidden_state=hidden_states, hidden_states=encoder_states
361
+ )
362
+
363
+
364
+ class InternVisionModel(PreTrainedModel):
365
+ main_input_name = 'pixel_values'
366
+ _supports_flash_attn_2 = True
367
+ config_class = InternVisionConfig
368
+ _no_split_modules = ['InternVisionEncoderLayer']
369
+
370
+ def __init__(self, config: InternVisionConfig):
371
+ super().__init__(config)
372
+ self.config = config
373
+
374
+ self.embeddings = InternVisionEmbeddings(config)
375
+ self.encoder = InternVisionEncoder(config)
376
+
377
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
378
+ pos_emb = self.embeddings.position_embedding
379
+ _, num_positions, embed_dim = pos_emb.shape
380
+ cls_emb = pos_emb[:, :1, :]
381
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
382
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
383
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
384
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
385
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
386
+ self.embeddings.image_size = new_size
387
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
388
+
389
+ def get_input_embeddings(self):
390
+ return self.embeddings
391
+
392
+ def forward(
393
+ self,
394
+ pixel_values: Optional[torch.FloatTensor] = None,
395
+ output_hidden_states: Optional[bool] = None,
396
+ return_dict: Optional[bool] = None,
397
+ pixel_embeds: Optional[torch.FloatTensor] = None,
398
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
399
+ output_hidden_states = (
400
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
401
+ )
402
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
403
+
404
+ if pixel_values is None and pixel_embeds is None:
405
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
406
+
407
+ if pixel_embeds is not None:
408
+ hidden_states = pixel_embeds
409
+ else:
410
+ if len(pixel_values.shape) == 4:
411
+ hidden_states = self.embeddings(pixel_values)
412
+ else:
413
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
414
+ encoder_outputs = self.encoder(
415
+ inputs_embeds=hidden_states,
416
+ output_hidden_states=output_hidden_states,
417
+ return_dict=return_dict,
418
+ )
419
+ last_hidden_state = encoder_outputs.last_hidden_state
420
+ pooled_output = last_hidden_state[:, 0, :]
421
+
422
+ if not return_dict:
423
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
424
+
425
+ return BaseModelOutputWithPooling(
426
+ last_hidden_state=last_hidden_state,
427
+ pooler_output=pooled_output,
428
+ hidden_states=encoder_outputs.hidden_states,
429
+ attentions=encoder_outputs.attentions,
430
+ )
modeling_internlm2.py ADDED
@@ -0,0 +1,1415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except: # noqa # pylint: disable=bare-except
41
+ BaseStreamer = None
42
+
43
+ from .configuration_internlm2 import InternLM2Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = 'InternLM2Config'
48
+
49
+ flash_attn_func, flash_attn_varlen_func = None, None
50
+ pad_input, index_first_axis, unpad_input = None, None, None
51
+ try:
52
+ from flash_attn import flash_attn_func as _flash_attn_func
53
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
54
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
55
+ from flash_attn.bert_padding import pad_input as _pad_input
56
+ from flash_attn.bert_padding import unpad_input as _unpad_input
57
+
58
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
59
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
60
+ has_flash_attn = True
61
+ except:
62
+ has_flash_attn = False
63
+
64
+
65
+ def _import_flash_attn():
66
+ global flash_attn_func, flash_attn_varlen_func
67
+ global pad_input, index_first_axis, unpad_input
68
+ try:
69
+ from flash_attn import flash_attn_func as _flash_attn_func
70
+ from flash_attn import \
71
+ flash_attn_varlen_func as _flash_attn_varlen_func
72
+ from flash_attn.bert_padding import \
73
+ index_first_axis as _index_first_axis
74
+ from flash_attn.bert_padding import pad_input as _pad_input
75
+ from flash_attn.bert_padding import unpad_input as _unpad_input
76
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
77
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
78
+ except ImportError:
79
+ raise ImportError('flash_attn is not installed.')
80
+
81
+
82
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
83
+ def _get_unpad_data(attention_mask):
84
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
85
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
86
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
87
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
88
+ return (
89
+ indices,
90
+ cu_seqlens,
91
+ max_seqlen_in_batch,
92
+ )
93
+
94
+
95
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
96
+ def _make_causal_mask(
97
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
98
+ ):
99
+ """
100
+ Make causal mask used for bi-directional self-attention.
101
+ """
102
+ bsz, tgt_len = input_ids_shape
103
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
104
+ mask_cond = torch.arange(mask.size(-1), device=device)
105
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
106
+ mask = mask.to(dtype)
107
+
108
+ if past_key_values_length > 0:
109
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
110
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
111
+
112
+
113
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
114
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
115
+ """
116
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
117
+ """
118
+ bsz, src_len = mask.size()
119
+ tgt_len = tgt_len if tgt_len is not None else src_len
120
+
121
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
122
+
123
+ inverted_mask = 1.0 - expanded_mask
124
+
125
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
126
+
127
+
128
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
129
+ class InternLM2RMSNorm(nn.Module):
130
+ def __init__(self, hidden_size, eps=1e-6):
131
+ """
132
+ InternLM2RMSNorm is equivalent to T5LayerNorm
133
+ """
134
+ super().__init__()
135
+ self.weight = nn.Parameter(torch.ones(hidden_size))
136
+ self.variance_epsilon = eps
137
+
138
+ def forward(self, hidden_states):
139
+ input_dtype = hidden_states.dtype
140
+ hidden_states = hidden_states.to(torch.float32)
141
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
142
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
143
+ return self.weight * hidden_states.to(input_dtype)
144
+
145
+
146
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
147
+ class InternLM2RotaryEmbedding(nn.Module):
148
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
149
+ super().__init__()
150
+
151
+ self.dim = dim
152
+ self.max_position_embeddings = max_position_embeddings
153
+ self.base = base
154
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
155
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
156
+
157
+ # Build here to make `torch.jit.trace` work.
158
+ self._set_cos_sin_cache(
159
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
160
+ )
161
+
162
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
163
+ self.max_seq_len_cached = seq_len
164
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
165
+
166
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
167
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
168
+ emb = torch.cat((freqs, freqs), dim=-1)
169
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
170
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
171
+
172
+ def forward(self, x, seq_len=None):
173
+ # x: [bs, num_attention_heads, seq_len, head_size]
174
+ if seq_len > self.max_seq_len_cached:
175
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
176
+
177
+ return (
178
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
179
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
180
+ )
181
+
182
+
183
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
184
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
185
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
186
+
187
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
188
+ self.scaling_factor = scaling_factor
189
+ super().__init__(dim, max_position_embeddings, base, device)
190
+
191
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
192
+ self.max_seq_len_cached = seq_len
193
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
194
+ t = t / self.scaling_factor
195
+
196
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
197
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
198
+ emb = torch.cat((freqs, freqs), dim=-1)
199
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
200
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
201
+
202
+
203
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
204
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
205
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
206
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
207
+ """
208
+
209
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
210
+ self.scaling_factor = scaling_factor
211
+ super().__init__(dim, max_position_embeddings, base, device)
212
+
213
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
214
+ self.max_seq_len_cached = seq_len
215
+
216
+ if seq_len > self.max_position_embeddings:
217
+ base = self.base * (
218
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
219
+ ) ** (self.dim / (self.dim - 2))
220
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
221
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
222
+
223
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
224
+
225
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
226
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
227
+ emb = torch.cat((freqs, freqs), dim=-1)
228
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
229
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
230
+
231
+
232
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
233
+ def rotate_half(x):
234
+ """Rotates half the hidden dims of the input."""
235
+ x1 = x[..., : x.shape[-1] // 2]
236
+ x2 = x[..., x.shape[-1] // 2 :]
237
+ return torch.cat((-x2, x1), dim=-1)
238
+
239
+
240
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
241
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
242
+ """Applies Rotary Position Embedding to the query and key tensors."""
243
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
244
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
245
+ q_embed = (q * cos) + (rotate_half(q) * sin)
246
+ k_embed = (k * cos) + (rotate_half(k) * sin)
247
+ return q_embed, k_embed
248
+
249
+
250
+ class InternLM2MLP(nn.Module):
251
+ def __init__(self, config):
252
+ super().__init__()
253
+ self.config = config
254
+ self.hidden_size = config.hidden_size
255
+ self.intermediate_size = config.intermediate_size
256
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
257
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
258
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
259
+ self.act_fn = ACT2FN[config.hidden_act]
260
+
261
+ def forward(self, x):
262
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
263
+
264
+ return down_proj
265
+
266
+
267
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
268
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
269
+ """
270
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
271
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
272
+ """
273
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
274
+ if n_rep == 1:
275
+ return hidden_states
276
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
277
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
278
+
279
+
280
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
281
+ class InternLM2Attention(nn.Module):
282
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
283
+
284
+ def __init__(self, config: InternLM2Config):
285
+ super().__init__()
286
+ self.config = config
287
+ self.hidden_size = config.hidden_size
288
+ self.num_heads = config.num_attention_heads
289
+ self.head_dim = self.hidden_size // self.num_heads
290
+ self.num_key_value_heads = config.num_key_value_heads
291
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
292
+ self.max_position_embeddings = config.max_position_embeddings
293
+ self.is_causal = True
294
+
295
+ if (self.head_dim * self.num_heads) != self.hidden_size:
296
+ raise ValueError(
297
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
298
+ f' and `num_heads`: {self.num_heads}).'
299
+ )
300
+
301
+ self.wqkv = nn.Linear(
302
+ self.hidden_size,
303
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
304
+ bias=config.bias,
305
+ )
306
+
307
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
308
+ self._init_rope()
309
+
310
+ def _init_rope(self):
311
+ if self.config.rope_scaling is None:
312
+ self.rotary_emb = InternLM2RotaryEmbedding(
313
+ self.head_dim,
314
+ max_position_embeddings=self.max_position_embeddings,
315
+ base=self.config.rope_theta,
316
+ )
317
+ else:
318
+ scaling_type = self.config.rope_scaling['type']
319
+ scaling_factor = self.config.rope_scaling['factor']
320
+ if scaling_type == 'dynamic':
321
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
322
+ self.head_dim,
323
+ max_position_embeddings=self.max_position_embeddings,
324
+ base=self.config.rope_theta,
325
+ scaling_factor=scaling_factor,
326
+ )
327
+ elif scaling_type == 'linear':
328
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
329
+ self.head_dim,
330
+ max_position_embeddings=self.max_position_embeddings,
331
+ base=self.config.rope_theta,
332
+ scaling_factor=scaling_factor,
333
+ )
334
+ else:
335
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
336
+ return self.rotary_emb
337
+
338
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
339
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
340
+
341
+ def forward(
342
+ self,
343
+ hidden_states: torch.Tensor,
344
+ attention_mask: Optional[torch.Tensor] = None,
345
+ position_ids: Optional[torch.LongTensor] = None,
346
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
347
+ output_attentions: bool = False,
348
+ use_cache: bool = False,
349
+ **kwargs,
350
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
351
+ if 'padding_mask' in kwargs:
352
+ warnings.warn(
353
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
354
+ 'Please make sure use `attention_mask` instead.`'
355
+ )
356
+
357
+ bsz, q_len, _ = hidden_states.size()
358
+
359
+ qkv_states = self.wqkv(hidden_states)
360
+
361
+ qkv_states = rearrange(
362
+ qkv_states,
363
+ 'b q (h gs d) -> b q h gs d',
364
+ gs=2 + self.num_key_value_groups,
365
+ d=self.head_dim,
366
+ )
367
+
368
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
369
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
370
+ key_states = qkv_states[..., -2, :]
371
+ value_states = qkv_states[..., -1, :]
372
+
373
+ query_states = query_states.transpose(1, 2)
374
+ key_states = key_states.transpose(1, 2)
375
+ value_states = value_states.transpose(1, 2)
376
+
377
+ kv_seq_len = key_states.shape[-2]
378
+ if past_key_value is not None:
379
+ kv_seq_len += past_key_value[0].shape[-2]
380
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
381
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
382
+
383
+ if past_key_value is not None:
384
+ # reuse k, v, self_attention
385
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
386
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
387
+
388
+ past_key_value = (key_states, value_states) if use_cache else None
389
+
390
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
391
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
392
+
393
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
394
+
395
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
396
+ raise ValueError(
397
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
398
+ f' {attn_weights.size()}'
399
+ )
400
+
401
+ if attention_mask is not None:
402
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
403
+ raise ValueError(
404
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
405
+ )
406
+ attn_weights = attn_weights + attention_mask
407
+
408
+ # upcast attention to fp32
409
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
410
+ attn_output = torch.matmul(attn_weights, value_states)
411
+
412
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
413
+ raise ValueError(
414
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
415
+ f' {attn_output.size()}'
416
+ )
417
+
418
+ attn_output = attn_output.transpose(1, 2).contiguous()
419
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
420
+
421
+ attn_output = self.wo(attn_output)
422
+
423
+ if not output_attentions:
424
+ attn_weights = None
425
+
426
+ return attn_output, attn_weights, past_key_value
427
+
428
+
429
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
430
+ class InternLM2FlashAttention2(InternLM2Attention):
431
+ """
432
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
433
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
434
+ flash attention and deal with padding tokens in case the input contains any of them.
435
+ """
436
+
437
+ def forward(
438
+ self,
439
+ hidden_states: torch.Tensor,
440
+ attention_mask: Optional[torch.LongTensor] = None,
441
+ position_ids: Optional[torch.LongTensor] = None,
442
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
443
+ output_attentions: bool = False,
444
+ use_cache: bool = False,
445
+ **kwargs,
446
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
447
+ # InternLM2FlashAttention2 attention does not support output_attentions
448
+ if 'padding_mask' in kwargs:
449
+ warnings.warn(
450
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
451
+ 'Please make sure use `attention_mask` instead.`'
452
+ )
453
+
454
+ # overwrite attention_mask with padding_mask
455
+ attention_mask = kwargs.pop('padding_mask')
456
+
457
+ output_attentions = False
458
+
459
+ bsz, q_len, _ = hidden_states.size()
460
+
461
+ qkv_states = self.wqkv(hidden_states)
462
+
463
+ qkv_states = rearrange(
464
+ qkv_states,
465
+ 'b q (h gs d) -> b q h gs d',
466
+ gs=2 + self.num_key_value_groups,
467
+ d=self.head_dim,
468
+ )
469
+
470
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
471
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
472
+ key_states = qkv_states[..., -2, :]
473
+ value_states = qkv_states[..., -1, :]
474
+
475
+ query_states = query_states.transpose(1, 2)
476
+ key_states = key_states.transpose(1, 2)
477
+ value_states = value_states.transpose(1, 2)
478
+
479
+ kv_seq_len = key_states.shape[-2]
480
+ if past_key_value is not None:
481
+ kv_seq_len += past_key_value[0].shape[-2]
482
+
483
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
484
+
485
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
486
+
487
+ if past_key_value is not None:
488
+ # reuse k, v, self_attention
489
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
490
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
491
+
492
+ past_key_value = (key_states, value_states) if use_cache else None
493
+
494
+ query_states = query_states.transpose(1, 2)
495
+ key_states = key_states.transpose(1, 2)
496
+ value_states = value_states.transpose(1, 2)
497
+
498
+ attn_output = self._flash_attention_forward(
499
+ query_states, key_states, value_states, attention_mask, q_len
500
+ )
501
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
502
+ attn_output = self.wo(attn_output)
503
+
504
+ if not output_attentions:
505
+ attn_weights = None
506
+
507
+ return attn_output, attn_weights, past_key_value
508
+
509
+ def _flash_attention_forward(
510
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
511
+ ):
512
+ """
513
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
514
+ first unpad the input, then computes the attention scores and pad the final attention scores.
515
+
516
+ Args:
517
+ query_states (`torch.Tensor`):
518
+ Input query states to be passed to Flash Attention API
519
+ key_states (`torch.Tensor`):
520
+ Input key states to be passed to Flash Attention API
521
+ value_states (`torch.Tensor`):
522
+ Input value states to be passed to Flash Attention API
523
+ attention_mask (`torch.Tensor`):
524
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
525
+ position of padding tokens and 1 for the position of non-padding tokens.
526
+ dropout (`int`, *optional*):
527
+ Attention dropout
528
+ softmax_scale (`float`, *optional*):
529
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
530
+ """
531
+ # Contains at least one padding token in the sequence
532
+ causal = self.is_causal and query_length != 1
533
+ if attention_mask is not None:
534
+ batch_size = query_states.shape[0]
535
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
536
+ query_states, key_states, value_states, attention_mask, query_length
537
+ )
538
+
539
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
540
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
541
+
542
+ attn_output_unpad = flash_attn_varlen_func(
543
+ query_states,
544
+ key_states,
545
+ value_states,
546
+ cu_seqlens_q=cu_seqlens_q,
547
+ cu_seqlens_k=cu_seqlens_k,
548
+ max_seqlen_q=max_seqlen_in_batch_q,
549
+ max_seqlen_k=max_seqlen_in_batch_k,
550
+ dropout_p=dropout,
551
+ softmax_scale=softmax_scale,
552
+ causal=causal,
553
+ )
554
+
555
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
556
+ else:
557
+ attn_output = flash_attn_func(
558
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
559
+ )
560
+
561
+ return attn_output
562
+
563
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
564
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
565
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
566
+
567
+ key_layer = index_first_axis(
568
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
569
+ )
570
+ value_layer = index_first_axis(
571
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
572
+ )
573
+
574
+ if query_length == kv_seq_len:
575
+ query_layer = index_first_axis(
576
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
577
+ )
578
+ cu_seqlens_q = cu_seqlens_k
579
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
580
+ indices_q = indices_k
581
+ elif query_length == 1:
582
+ max_seqlen_in_batch_q = 1
583
+ cu_seqlens_q = torch.arange(
584
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
585
+ ) # There is a memcpy here, that is very bad.
586
+ indices_q = cu_seqlens_q[:-1]
587
+ query_layer = query_layer.squeeze(1)
588
+ else:
589
+ # The -q_len: slice assumes left padding.
590
+ attention_mask = attention_mask[:, -query_length:]
591
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
592
+
593
+ return (
594
+ query_layer,
595
+ key_layer,
596
+ value_layer,
597
+ indices_q.to(torch.int64),
598
+ (cu_seqlens_q, cu_seqlens_k),
599
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
600
+ )
601
+
602
+
603
+ INTERNLM2_ATTENTION_CLASSES = {
604
+ 'eager': InternLM2Attention,
605
+ 'flash_attention_2': InternLM2FlashAttention2,
606
+ }
607
+
608
+
609
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
610
+ class InternLM2DecoderLayer(nn.Module):
611
+ def __init__(self, config: InternLM2Config):
612
+ super().__init__()
613
+ self.hidden_size = config.hidden_size
614
+
615
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
616
+
617
+ self.feed_forward = InternLM2MLP(config)
618
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
619
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
620
+
621
+ def forward(
622
+ self,
623
+ hidden_states: torch.Tensor,
624
+ attention_mask: Optional[torch.Tensor] = None,
625
+ position_ids: Optional[torch.LongTensor] = None,
626
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
627
+ output_attentions: Optional[bool] = False,
628
+ use_cache: Optional[bool] = False,
629
+ **kwargs,
630
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
631
+ """
632
+ Args:
633
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
634
+ attention_mask (`torch.FloatTensor`, *optional*):
635
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
636
+ query_sequence_length, key_sequence_length)` if default attention is used.
637
+ output_attentions (`bool`, *optional*):
638
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
639
+ returned tensors for more detail.
640
+ use_cache (`bool`, *optional*):
641
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
642
+ (see `past_key_values`).
643
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
644
+ """
645
+ if 'padding_mask' in kwargs:
646
+ warnings.warn(
647
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
648
+ 'Please make sure use `attention_mask` instead.`'
649
+ )
650
+
651
+ residual = hidden_states
652
+
653
+ hidden_states = self.attention_norm(hidden_states)
654
+
655
+ # Self Attention
656
+ hidden_states, self_attn_weights, present_key_value = self.attention(
657
+ hidden_states=hidden_states,
658
+ attention_mask=attention_mask,
659
+ position_ids=position_ids,
660
+ past_key_value=past_key_value,
661
+ output_attentions=output_attentions,
662
+ use_cache=use_cache,
663
+ **kwargs,
664
+ )
665
+ hidden_states = residual + hidden_states
666
+
667
+ # Fully Connected
668
+ residual = hidden_states
669
+ hidden_states = self.ffn_norm(hidden_states)
670
+ hidden_states = self.feed_forward(hidden_states)
671
+ hidden_states = residual + hidden_states
672
+
673
+ outputs = (hidden_states,)
674
+
675
+ if output_attentions:
676
+ outputs += (self_attn_weights,)
677
+
678
+ if use_cache:
679
+ outputs += (present_key_value,)
680
+
681
+ return outputs
682
+
683
+
684
+ InternLM2_START_DOCSTRING = r"""
685
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
686
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
687
+ etc.)
688
+
689
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
690
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
691
+ and behavior.
692
+
693
+ Parameters:
694
+ config ([`InternLM2Config`]):
695
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
696
+ load the weights associated with the model, only the configuration. Check out the
697
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
698
+ """
699
+
700
+
701
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
702
+ @add_start_docstrings(
703
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
704
+ InternLM2_START_DOCSTRING,
705
+ )
706
+ class InternLM2PreTrainedModel(PreTrainedModel):
707
+ config_class = InternLM2Config
708
+ base_model_prefix = 'model'
709
+ supports_gradient_checkpointing = True
710
+ _no_split_modules = ['InternLM2DecoderLayer']
711
+ _skip_keys_device_placement = 'past_key_values'
712
+ _supports_flash_attn_2 = True
713
+
714
+ def _init_weights(self, module):
715
+ std = self.config.initializer_range
716
+ if isinstance(module, nn.Linear):
717
+ module.weight.data.normal_(mean=0.0, std=std)
718
+ if module.bias is not None:
719
+ module.bias.data.zero_()
720
+ elif isinstance(module, nn.Embedding):
721
+ module.weight.data.normal_(mean=0.0, std=std)
722
+ if module.padding_idx is not None:
723
+ module.weight.data[module.padding_idx].zero_()
724
+
725
+
726
+ InternLM2_INPUTS_DOCSTRING = r"""
727
+ Args:
728
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
729
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
730
+ it.
731
+
732
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
733
+ [`PreTrainedTokenizer.__call__`] for details.
734
+
735
+ [What are input IDs?](../glossary#input-ids)
736
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
737
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
738
+
739
+ - 1 for tokens that are **not masked**,
740
+ - 0 for tokens that are **masked**.
741
+
742
+ [What are attention masks?](../glossary#attention-mask)
743
+
744
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
745
+ [`PreTrainedTokenizer.__call__`] for details.
746
+
747
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
748
+ `past_key_values`).
749
+
750
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
751
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
752
+ information on the default strategy.
753
+
754
+ - 1 indicates the head is **not masked**,
755
+ - 0 indicates the head is **masked**.
756
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
757
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
758
+ config.n_positions - 1]`.
759
+
760
+ [What are position IDs?](../glossary#position-ids)
761
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
762
+ when `config.use_cache=True`):
763
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
764
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
765
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
766
+
767
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
768
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
769
+
770
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
771
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
772
+ of shape `(batch_size, sequence_length)`.
773
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
774
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
775
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
776
+ model's internal embedding lookup matrix.
777
+ use_cache (`bool`, *optional*):
778
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
779
+ `past_key_values`).
780
+ output_attentions (`bool`, *optional*):
781
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
782
+ tensors for more detail.
783
+ output_hidden_states (`bool`, *optional*):
784
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
785
+ more detail.
786
+ return_dict (`bool`, *optional*):
787
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
788
+ """
789
+
790
+
791
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
792
+ @add_start_docstrings(
793
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
794
+ InternLM2_START_DOCSTRING,
795
+ )
796
+ class InternLM2Model(InternLM2PreTrainedModel):
797
+ """
798
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
799
+
800
+ Args:
801
+ config: InternLM2Config
802
+ """
803
+
804
+ _auto_class = 'AutoModel'
805
+
806
+ def __init__(self, config: InternLM2Config):
807
+ super().__init__(config)
808
+ self.padding_idx = config.pad_token_id
809
+ self.vocab_size = config.vocab_size
810
+ self.config = config
811
+ if not has_flash_attn:
812
+ self.config.attn_implementation = 'eager'
813
+ print('Warning: Flash attention is not available, using eager attention instead.')
814
+
815
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
816
+
817
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
818
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
819
+
820
+ self.gradient_checkpointing = False
821
+ # Initialize weights and apply final processing
822
+ self.post_init()
823
+
824
+ def get_input_embeddings(self):
825
+ return self.tok_embeddings
826
+
827
+ def set_input_embeddings(self, value):
828
+ self.tok_embeddings = value
829
+
830
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
831
+ # create causal mask
832
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
833
+ combined_attention_mask = None
834
+ if input_shape[-1] > 1:
835
+ combined_attention_mask = _make_causal_mask(
836
+ input_shape,
837
+ inputs_embeds.dtype,
838
+ device=inputs_embeds.device,
839
+ past_key_values_length=past_key_values_length,
840
+ )
841
+
842
+ if attention_mask is not None:
843
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
844
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
845
+ inputs_embeds.device
846
+ )
847
+ combined_attention_mask = (
848
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
849
+ )
850
+
851
+ return combined_attention_mask
852
+
853
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
854
+ def forward(
855
+ self,
856
+ input_ids: torch.LongTensor = None,
857
+ attention_mask: Optional[torch.Tensor] = None,
858
+ position_ids: Optional[torch.LongTensor] = None,
859
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
860
+ inputs_embeds: Optional[torch.FloatTensor] = None,
861
+ use_cache: Optional[bool] = None,
862
+ output_attentions: Optional[bool] = None,
863
+ output_hidden_states: Optional[bool] = None,
864
+ return_dict: Optional[bool] = None,
865
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
866
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
867
+ output_hidden_states = (
868
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
869
+ )
870
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
871
+
872
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
873
+
874
+ if self.config.attn_implementation == 'flash_attention_2':
875
+ _import_flash_attn()
876
+
877
+ # retrieve input_ids and inputs_embeds
878
+ if input_ids is not None and inputs_embeds is not None:
879
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
880
+ elif input_ids is not None:
881
+ batch_size, seq_length = input_ids.shape[:2]
882
+ elif inputs_embeds is not None:
883
+ batch_size, seq_length = inputs_embeds.shape[:2]
884
+ else:
885
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
886
+
887
+ seq_length_with_past = seq_length
888
+ past_key_values_length = 0
889
+ if past_key_values is not None:
890
+ past_key_values_length = past_key_values[0][0].shape[2]
891
+ seq_length_with_past = seq_length_with_past + past_key_values_length
892
+
893
+ if position_ids is None:
894
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
895
+ position_ids = torch.arange(
896
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
897
+ )
898
+ position_ids = position_ids.unsqueeze(0)
899
+
900
+ if inputs_embeds is None:
901
+ inputs_embeds = self.tok_embeddings(input_ids)
902
+
903
+ if self.config.attn_implementation == 'flash_attention_2':
904
+ # 2d mask is passed through the layers
905
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
906
+ else:
907
+ if attention_mask is None:
908
+ attention_mask = torch.ones(
909
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
910
+ )
911
+ attention_mask = self._prepare_decoder_attention_mask(
912
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
913
+ )
914
+
915
+ # embed positions
916
+ hidden_states = inputs_embeds
917
+
918
+ if self.gradient_checkpointing and self.training:
919
+ if use_cache:
920
+ logger.warning_once(
921
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
922
+ )
923
+ use_cache = False
924
+
925
+ # decoder layers
926
+ all_hidden_states = () if output_hidden_states else None
927
+ all_self_attns = () if output_attentions else None
928
+ next_decoder_cache = () if use_cache else None
929
+
930
+ for idx, decoder_layer in enumerate(self.layers):
931
+ if output_hidden_states:
932
+ all_hidden_states += (hidden_states,)
933
+
934
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
935
+
936
+ if self.gradient_checkpointing and self.training:
937
+
938
+ def create_custom_forward(module):
939
+ def custom_forward(*inputs):
940
+ # None for past_key_value
941
+ return module(*inputs, output_attentions, None)
942
+
943
+ return custom_forward
944
+
945
+ layer_outputs = torch.utils.checkpoint.checkpoint(
946
+ create_custom_forward(decoder_layer),
947
+ hidden_states,
948
+ attention_mask,
949
+ position_ids,
950
+ None,
951
+ )
952
+ else:
953
+ layer_outputs = decoder_layer(
954
+ hidden_states,
955
+ attention_mask=attention_mask,
956
+ position_ids=position_ids,
957
+ past_key_value=past_key_value,
958
+ output_attentions=output_attentions,
959
+ use_cache=use_cache,
960
+ )
961
+
962
+ hidden_states = layer_outputs[0]
963
+
964
+ if use_cache:
965
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
966
+
967
+ if output_attentions:
968
+ all_self_attns += (layer_outputs[1],)
969
+
970
+ hidden_states = self.norm(hidden_states)
971
+
972
+ # add hidden states from the last decoder layer
973
+ if output_hidden_states:
974
+ all_hidden_states += (hidden_states,)
975
+
976
+ next_cache = next_decoder_cache if use_cache else None
977
+ if not return_dict:
978
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
979
+ return BaseModelOutputWithPast(
980
+ last_hidden_state=hidden_states,
981
+ past_key_values=next_cache,
982
+ hidden_states=all_hidden_states,
983
+ attentions=all_self_attns,
984
+ )
985
+
986
+
987
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
988
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
989
+ _auto_class = 'AutoModelForCausalLM'
990
+
991
+ _tied_weights_keys = ['output.weight']
992
+
993
+ def __init__(self, config):
994
+ super().__init__(config)
995
+ self.model = InternLM2Model(config)
996
+ self.vocab_size = config.vocab_size
997
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
998
+
999
+ # Initialize weights and apply final processing
1000
+ self.post_init()
1001
+
1002
+ def get_input_embeddings(self):
1003
+ return self.model.tok_embeddings
1004
+
1005
+ def set_input_embeddings(self, value):
1006
+ self.model.tok_embeddings = value
1007
+
1008
+ def get_output_embeddings(self):
1009
+ return self.output
1010
+
1011
+ def set_output_embeddings(self, new_embeddings):
1012
+ self.output = new_embeddings
1013
+
1014
+ def set_decoder(self, decoder):
1015
+ self.model = decoder
1016
+
1017
+ def get_decoder(self):
1018
+ return self.model
1019
+
1020
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1021
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1022
+ def forward(
1023
+ self,
1024
+ input_ids: torch.LongTensor = None,
1025
+ attention_mask: Optional[torch.Tensor] = None,
1026
+ position_ids: Optional[torch.LongTensor] = None,
1027
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1028
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1029
+ labels: Optional[torch.LongTensor] = None,
1030
+ use_cache: Optional[bool] = None,
1031
+ output_attentions: Optional[bool] = None,
1032
+ output_hidden_states: Optional[bool] = None,
1033
+ return_dict: Optional[bool] = None,
1034
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1035
+ r"""
1036
+ Args:
1037
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1038
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1039
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1040
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1041
+
1042
+ Returns:
1043
+
1044
+ Example:
1045
+
1046
+ ```python
1047
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1048
+
1049
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1050
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1051
+
1052
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1053
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1054
+
1055
+ >>> # Generate
1056
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1057
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1058
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1059
+ ```"""
1060
+
1061
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1062
+ output_hidden_states = (
1063
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1064
+ )
1065
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1066
+
1067
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1068
+ outputs = self.model(
1069
+ input_ids=input_ids,
1070
+ attention_mask=attention_mask,
1071
+ position_ids=position_ids,
1072
+ past_key_values=past_key_values,
1073
+ inputs_embeds=inputs_embeds,
1074
+ use_cache=use_cache,
1075
+ output_attentions=output_attentions,
1076
+ output_hidden_states=output_hidden_states,
1077
+ return_dict=return_dict,
1078
+ )
1079
+
1080
+ hidden_states = outputs[0]
1081
+ logits = self.output(hidden_states)
1082
+ logits = logits.float()
1083
+
1084
+ loss = None
1085
+ if labels is not None:
1086
+ # Shift so that tokens < n predict n
1087
+ shift_logits = logits[..., :-1, :].contiguous()
1088
+ shift_labels = labels[..., 1:].contiguous()
1089
+ # Flatten the tokens
1090
+ loss_fct = CrossEntropyLoss()
1091
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1092
+ shift_labels = shift_labels.view(-1)
1093
+ # Enable model parallelism
1094
+ shift_labels = shift_labels.to(shift_logits.device)
1095
+ loss = loss_fct(shift_logits, shift_labels)
1096
+
1097
+ if not return_dict:
1098
+ output = (logits,) + outputs[1:]
1099
+ return (loss,) + output if loss is not None else output
1100
+
1101
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1102
+ output = CausalLMOutputWithPast(
1103
+ loss=loss,
1104
+ logits=logits,
1105
+ past_key_values=outputs.past_key_values,
1106
+ hidden_states=outputs.hidden_states,
1107
+ attentions=outputs.attentions,
1108
+ )
1109
+ output['logits'] = output['logits'].to(device)
1110
+ return output
1111
+
1112
+ def prepare_inputs_for_generation(
1113
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1114
+ ):
1115
+ if past_key_values is not None:
1116
+ past_length = past_key_values[0][0].shape[2]
1117
+
1118
+ # Some generation methods already pass only the last input ID
1119
+ if input_ids.shape[1] > past_length:
1120
+ remove_prefix_length = past_length
1121
+ else:
1122
+ # Default to old behavior: keep only final ID
1123
+ remove_prefix_length = input_ids.shape[1] - 1
1124
+
1125
+ input_ids = input_ids[:, remove_prefix_length:]
1126
+
1127
+ position_ids = kwargs.get('position_ids', None)
1128
+ if attention_mask is not None and position_ids is None:
1129
+ # create position_ids on the fly for batch generation
1130
+ position_ids = attention_mask.long().cumsum(-1) - 1
1131
+ position_ids.masked_fill_(attention_mask == 0, 1)
1132
+ if past_key_values:
1133
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1134
+
1135
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1136
+ if inputs_embeds is not None and past_key_values is None:
1137
+ model_inputs = {'inputs_embeds': inputs_embeds}
1138
+ else:
1139
+ model_inputs = {'input_ids': input_ids}
1140
+
1141
+ model_inputs.update(
1142
+ {
1143
+ 'position_ids': position_ids,
1144
+ 'past_key_values': past_key_values,
1145
+ 'use_cache': kwargs.get('use_cache'),
1146
+ 'attention_mask': attention_mask,
1147
+ }
1148
+ )
1149
+ return model_inputs
1150
+
1151
+ @staticmethod
1152
+ def _reorder_cache(past_key_values, beam_idx):
1153
+ reordered_past = ()
1154
+ for layer_past in past_key_values:
1155
+ reordered_past += (
1156
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1157
+ )
1158
+ return reordered_past
1159
+
1160
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
1161
+ if tokenizer.add_bos_token:
1162
+ prompt = ''
1163
+ else:
1164
+ prompt = tokenizer.bos_token
1165
+ if meta_instruction:
1166
+ prompt += f"""<|begin▁of▁sentence|>system\n{meta_instruction}<|end▁of▁sentence|>\n"""
1167
+ for record in history:
1168
+ prompt += f"""<|begin▁of▁sentence|>user\n{record[0]}<|end▁of▁sentence|>\n<|begin▁of▁sentence|>assistant\n{record[1]}<|end▁of▁sentence|>\n"""
1169
+ prompt += f"""<|begin▁of▁sentence|>user\n{query}<|end▁of▁sentence|>\n<|begin▁of▁sentence|>assistant\n"""
1170
+ return tokenizer([prompt], return_tensors='pt')
1171
+
1172
+ @torch.no_grad()
1173
+ def chat(
1174
+ self,
1175
+ tokenizer,
1176
+ query: str,
1177
+ history: List[Tuple[str, str]] = [],
1178
+ streamer: Optional[BaseStreamer] = None,
1179
+ max_new_tokens: int = 1024,
1180
+ do_sample: bool = True,
1181
+ temperature: float = 0.8,
1182
+ top_p: float = 0.8,
1183
+ meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1184
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1185
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
1186
+ **kwargs,
1187
+ ):
1188
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1189
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1190
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1191
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|end▁of▁sentence|>'])[0]]
1192
+ outputs = self.generate(
1193
+ **inputs,
1194
+ streamer=streamer,
1195
+ max_new_tokens=max_new_tokens,
1196
+ do_sample=do_sample,
1197
+ temperature=temperature,
1198
+ top_p=top_p,
1199
+ eos_token_id=eos_token_id,
1200
+ **kwargs,
1201
+ )
1202
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
1203
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1204
+ response = response.split('<|end▁of▁sentence|>')[0]
1205
+ history = history + [(query, response)]
1206
+ return response, history
1207
+
1208
+ @torch.no_grad()
1209
+ def stream_chat(
1210
+ self,
1211
+ tokenizer,
1212
+ query: str,
1213
+ history: List[Tuple[str, str]] = [],
1214
+ max_new_tokens: int = 1024,
1215
+ do_sample: bool = True,
1216
+ temperature: float = 0.8,
1217
+ top_p: float = 0.8,
1218
+ **kwargs,
1219
+ ):
1220
+ """
1221
+ Return a generator in format: (response, history)
1222
+ Eg.
1223
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1224
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1225
+ """
1226
+ if BaseStreamer is None:
1227
+ raise ModuleNotFoundError(
1228
+ 'The version of `transformers` is too low. Please make sure '
1229
+ 'that you have installed `transformers>=4.28.0`.'
1230
+ )
1231
+
1232
+ response_queue = queue.Queue(maxsize=20)
1233
+
1234
+ class ChatStreamer(BaseStreamer):
1235
+ def __init__(self, tokenizer) -> None:
1236
+ super().__init__()
1237
+ self.tokenizer = tokenizer
1238
+ self.queue = response_queue
1239
+ self.query = query
1240
+ self.history = history
1241
+ self.response = ''
1242
+ self.cache = []
1243
+ self.received_inputs = False
1244
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1245
+
1246
+ def put(self, value):
1247
+ if len(value.shape) > 1 and value.shape[0] > 1:
1248
+ raise ValueError('ChatStreamer only supports batch size 1')
1249
+ elif len(value.shape) > 1:
1250
+ value = value[0]
1251
+
1252
+ if not self.received_inputs:
1253
+ # The first received value is input_ids, ignore here
1254
+ self.received_inputs = True
1255
+ return
1256
+
1257
+ self.cache.extend(value.tolist())
1258
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1259
+ if token.strip() != '<|end▁of▁sentence|>':
1260
+ self.response = self.response + token
1261
+ history = self.history + [(self.query, self.response)]
1262
+ self.queue.put((self.response, history))
1263
+ self.cache = []
1264
+ else:
1265
+ self.end()
1266
+
1267
+ def end(self):
1268
+ self.queue.put(None)
1269
+
1270
+ def stream_producer():
1271
+ return self.chat(
1272
+ tokenizer=tokenizer,
1273
+ query=query,
1274
+ streamer=ChatStreamer(tokenizer=tokenizer),
1275
+ history=history,
1276
+ max_new_tokens=max_new_tokens,
1277
+ do_sample=do_sample,
1278
+ temperature=temperature,
1279
+ top_p=top_p,
1280
+ **kwargs,
1281
+ )
1282
+
1283
+ def consumer():
1284
+ producer = threading.Thread(target=stream_producer)
1285
+ producer.start()
1286
+ while True:
1287
+ res = response_queue.get()
1288
+ if res is None:
1289
+ return
1290
+ yield res
1291
+
1292
+ return consumer()
1293
+
1294
+
1295
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1296
+ @add_start_docstrings(
1297
+ """
1298
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1299
+
1300
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1301
+ as other causal models (e.g. GPT-2) do.
1302
+
1303
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1304
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1305
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1306
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1307
+ each row of the batch).
1308
+ """,
1309
+ InternLM2_START_DOCSTRING,
1310
+ )
1311
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1312
+ def __init__(self, config):
1313
+ super().__init__(config)
1314
+ self.num_labels = config.num_labels
1315
+ self.model = InternLM2Model(config)
1316
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1317
+
1318
+ # Initialize weights and apply final processing
1319
+ self.post_init()
1320
+
1321
+ def get_input_embeddings(self):
1322
+ return self.model.tok_embeddings
1323
+
1324
+ def set_input_embeddings(self, value):
1325
+ self.model.tok_embeddings = value
1326
+
1327
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1328
+ def forward(
1329
+ self,
1330
+ input_ids: torch.LongTensor = None,
1331
+ attention_mask: Optional[torch.Tensor] = None,
1332
+ position_ids: Optional[torch.LongTensor] = None,
1333
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1334
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1335
+ labels: Optional[torch.LongTensor] = None,
1336
+ use_cache: Optional[bool] = None,
1337
+ output_attentions: Optional[bool] = None,
1338
+ output_hidden_states: Optional[bool] = None,
1339
+ return_dict: Optional[bool] = None,
1340
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1341
+ r"""
1342
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1343
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1344
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1345
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1346
+ """
1347
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1348
+
1349
+ transformer_outputs = self.model(
1350
+ input_ids,
1351
+ attention_mask=attention_mask,
1352
+ position_ids=position_ids,
1353
+ past_key_values=past_key_values,
1354
+ inputs_embeds=inputs_embeds,
1355
+ use_cache=use_cache,
1356
+ output_attentions=output_attentions,
1357
+ output_hidden_states=output_hidden_states,
1358
+ return_dict=return_dict,
1359
+ )
1360
+ hidden_states = transformer_outputs[0]
1361
+ logits = self.score(hidden_states)
1362
+
1363
+ if input_ids is not None:
1364
+ batch_size = input_ids.shape[0]
1365
+ else:
1366
+ batch_size = inputs_embeds.shape[0]
1367
+
1368
+ if self.config.pad_token_id is None and batch_size != 1:
1369
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1370
+ if self.config.pad_token_id is None:
1371
+ sequence_lengths = -1
1372
+ else:
1373
+ if input_ids is not None:
1374
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1375
+ logits.device
1376
+ )
1377
+ else:
1378
+ sequence_lengths = -1
1379
+
1380
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1381
+
1382
+ loss = None
1383
+ if labels is not None:
1384
+ labels = labels.to(logits.device)
1385
+ if self.config.problem_type is None:
1386
+ if self.num_labels == 1:
1387
+ self.config.problem_type = 'regression'
1388
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1389
+ self.config.problem_type = 'single_label_classification'
1390
+ else:
1391
+ self.config.problem_type = 'multi_label_classification'
1392
+
1393
+ if self.config.problem_type == 'regression':
1394
+ loss_fct = MSELoss()
1395
+ if self.num_labels == 1:
1396
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1397
+ else:
1398
+ loss = loss_fct(pooled_logits, labels)
1399
+ elif self.config.problem_type == 'single_label_classification':
1400
+ loss_fct = CrossEntropyLoss()
1401
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1402
+ elif self.config.problem_type == 'multi_label_classification':
1403
+ loss_fct = BCEWithLogitsLoss()
1404
+ loss = loss_fct(pooled_logits, labels)
1405
+ if not return_dict:
1406
+ output = (pooled_logits,) + transformer_outputs[1:]
1407
+ return ((loss,) + output) if loss is not None else output
1408
+
1409
+ return SequenceClassifierOutputWithPast(
1410
+ loss=loss,
1411
+ logits=pooled_logits,
1412
+ past_key_values=transformer_outputs.past_key_values,
1413
+ hidden_states=transformer_outputs.hidden_states,
1414
+ attentions=transformer_outputs.attentions,
1415
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import warnings
8
+ from typing import List, Optional, Tuple, Union
9
+
10
+ import torch.utils.checkpoint
11
+ import transformers
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss
14
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
15
+ LlamaTokenizer)
16
+ from transformers.modeling_outputs import CausalLMOutputWithPast
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import ModelOutput, logging
19
+
20
+ from .configuration_internvl_chat import InternVLChatConfig
21
+ from .conversation import get_conv_template
22
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
23
+ from .modeling_internlm2 import InternLM2ForCausalLM
24
+
25
+ from transformers import Qwen2Config, Qwen2ForCausalLM
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+
30
+ def version_cmp(v1, v2, op='eq'):
31
+ import operator
32
+
33
+ from packaging import version
34
+ op_func = getattr(operator, op)
35
+ return op_func(version.parse(v1), version.parse(v2))
36
+
37
+
38
+ class InternVLChatModel(PreTrainedModel):
39
+ config_class = InternVLChatConfig
40
+ main_input_name = 'pixel_values'
41
+ base_model_prefix = 'language_model'
42
+ _supports_flash_attn_2 = True
43
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer']
44
+
45
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
46
+ super().__init__(config)
47
+
48
+ assert version_cmp(transformers.__version__, '4.36.2', 'ge')
49
+ image_size = config.force_image_size or config.vision_config.image_size
50
+ patch_size = config.vision_config.patch_size
51
+ self.patch_size = patch_size
52
+ self.select_layer = config.select_layer
53
+ self.template = config.template
54
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
55
+ self.downsample_ratio = config.downsample_ratio
56
+ self.ps_version = config.ps_version
57
+ use_flash_attn = use_flash_attn if has_flash_attn else False
58
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
59
+ config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
60
+
61
+ logger.info(f'num_image_token: {self.num_image_token}')
62
+ logger.info(f'ps_version: {self.ps_version}')
63
+ if vision_model is not None:
64
+ self.vision_model = vision_model
65
+ else:
66
+ self.vision_model = InternVisionModel(config.vision_config)
67
+ if language_model is not None:
68
+ self.language_model = language_model
69
+ else:
70
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
71
+ self.language_model = LlamaForCausalLM(config.llm_config)
72
+ elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
73
+ self.language_model = InternLM2ForCausalLM(config.llm_config)
74
+ elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
75
+ self.language_model = Qwen2ForCausalLM(config.llm_config)
76
+ else:
77
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
78
+
79
+ vit_hidden_size = config.vision_config.hidden_size
80
+ llm_hidden_size = config.llm_config.hidden_size
81
+
82
+ self.mlp1 = nn.Sequential(
83
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
84
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
85
+ nn.GELU(),
86
+ nn.Linear(llm_hidden_size, llm_hidden_size)
87
+ )
88
+
89
+ self.img_context_token_id = None
90
+ self.conv_template = get_conv_template(self.template)
91
+ self.system_message = self.conv_template.system_message
92
+
93
+ def forward(
94
+ self,
95
+ pixel_values: torch.FloatTensor,
96
+ input_ids: torch.LongTensor = None,
97
+ attention_mask: Optional[torch.Tensor] = None,
98
+ position_ids: Optional[torch.LongTensor] = None,
99
+ image_flags: Optional[torch.LongTensor] = None,
100
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
101
+ labels: Optional[torch.LongTensor] = None,
102
+ use_cache: Optional[bool] = None,
103
+ output_attentions: Optional[bool] = None,
104
+ output_hidden_states: Optional[bool] = None,
105
+ return_dict: Optional[bool] = None,
106
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
107
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
108
+
109
+ image_flags = image_flags.squeeze(-1)
110
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
111
+
112
+ vit_embeds = self.extract_feature(pixel_values)
113
+ vit_embeds = vit_embeds[image_flags == 1]
114
+ vit_batch_size = pixel_values.shape[0]
115
+
116
+ B, N, C = input_embeds.shape
117
+ input_embeds = input_embeds.reshape(B * N, C)
118
+
119
+ if torch.distributed.get_rank() == 0:
120
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
121
+
122
+ input_ids = input_ids.reshape(B * N)
123
+ selected = (input_ids == self.img_context_token_id)
124
+ try:
125
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
126
+ except Exception as e:
127
+ vit_embeds = vit_embeds.reshape(-1, C)
128
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
129
+ f'vit_embeds.shape={vit_embeds.shape}')
130
+ n_token = selected.sum()
131
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
132
+
133
+ input_embeds = input_embeds.reshape(B, N, C)
134
+
135
+ outputs = self.language_model(
136
+ inputs_embeds=input_embeds,
137
+ attention_mask=attention_mask,
138
+ position_ids=position_ids,
139
+ past_key_values=past_key_values,
140
+ use_cache=use_cache,
141
+ output_attentions=output_attentions,
142
+ output_hidden_states=output_hidden_states,
143
+ return_dict=return_dict,
144
+ )
145
+ logits = outputs.logits
146
+
147
+ loss = None
148
+ if labels is not None:
149
+ # Shift so that tokens < n predict n
150
+ shift_logits = logits[..., :-1, :].contiguous()
151
+ shift_labels = labels[..., 1:].contiguous()
152
+ # Flatten the tokens
153
+ loss_fct = CrossEntropyLoss()
154
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
155
+ shift_labels = shift_labels.view(-1)
156
+ # Enable model parallelism
157
+ shift_labels = shift_labels.to(shift_logits.device)
158
+ loss = loss_fct(shift_logits, shift_labels)
159
+
160
+ if not return_dict:
161
+ output = (logits,) + outputs[1:]
162
+ return (loss,) + output if loss is not None else output
163
+
164
+ return CausalLMOutputWithPast(
165
+ loss=loss,
166
+ logits=logits,
167
+ past_key_values=outputs.past_key_values,
168
+ hidden_states=outputs.hidden_states,
169
+ attentions=outputs.attentions,
170
+ )
171
+
172
+ def pixel_shuffle(self, x, scale_factor=0.5):
173
+ n, w, h, c = x.size()
174
+ # N, W, H, C --> N, W, H * scale, C // scale
175
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
176
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
177
+ x = x.permute(0, 2, 1, 3).contiguous()
178
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
179
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
180
+ int(c / (scale_factor * scale_factor)))
181
+ if self.ps_version == 'v1':
182
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
183
+ 'which results in a transposed image.')
184
+ else:
185
+ x = x.permute(0, 2, 1, 3).contiguous()
186
+ return x
187
+
188
+ def extract_feature(self, pixel_values):
189
+ if self.select_layer == -1:
190
+ vit_embeds = self.vision_model(
191
+ pixel_values=pixel_values,
192
+ output_hidden_states=False,
193
+ return_dict=True).last_hidden_state
194
+ else:
195
+ vit_embeds = self.vision_model(
196
+ pixel_values=pixel_values,
197
+ output_hidden_states=True,
198
+ return_dict=True).hidden_states[self.select_layer]
199
+ vit_embeds = vit_embeds[:, 1:, :]
200
+
201
+ h = w = int(vit_embeds.shape[1] ** 0.5)
202
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
203
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
204
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
205
+ vit_embeds = self.mlp1(vit_embeds)
206
+ return vit_embeds
207
+
208
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
209
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
210
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
211
+ if history is not None or return_history:
212
+ print('Now multi-turn chat is not supported in batch_chat.')
213
+ raise NotImplementedError
214
+
215
+ if image_counts is not None:
216
+ num_patches_list = image_counts
217
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
218
+
219
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
220
+ self.img_context_token_id = img_context_token_id
221
+ # print("##############1################")
222
+ # print(self.img_context_token_id)
223
+ # print("##############1################")
224
+ # exit()
225
+
226
+ if verbose and pixel_values is not None:
227
+ image_bs = pixel_values.shape[0]
228
+ print(f'dynamic ViT batch size: {image_bs}')
229
+
230
+ queries = []
231
+ for idx, num_patches in enumerate(num_patches_list):
232
+ question = questions[idx]
233
+ if pixel_values is not None and '<image>' not in question:
234
+ question = '<image>\n' + question
235
+ template = get_conv_template(self.template)
236
+ template.system_message = self.system_message
237
+ template.append_message(template.roles[0], question)
238
+ template.append_message(template.roles[1], None)
239
+ query = template.get_prompt()
240
+
241
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
242
+ query = query.replace('<image>', image_tokens, 1)
243
+ queries.append(query)
244
+
245
+ tokenizer.padding_side = 'left'
246
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
247
+ input_ids = model_inputs['input_ids'].to(self.device)
248
+ attention_mask = model_inputs['attention_mask'].to(self.device)
249
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
250
+ generation_config['eos_token_id'] = eos_token_id
251
+ generation_output = self.generate(
252
+ pixel_values=pixel_values,
253
+ input_ids=input_ids,
254
+ attention_mask=attention_mask,
255
+ **generation_config
256
+ )
257
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
258
+ responses = [response.split(template.sep.strip())[0].strip() for response in responses]
259
+ return responses
260
+
261
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
262
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
263
+ verbose=False):
264
+
265
+ if history is None and pixel_values is not None and '<image>' not in question:
266
+ question = '<image>\n' + question
267
+
268
+ if num_patches_list is None:
269
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
270
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
271
+
272
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
273
+ self.img_context_token_id = img_context_token_id
274
+ # print("##############2################")
275
+ # print(self.img_context_token_id)
276
+ # print("##############2################")
277
+
278
+ template = get_conv_template(self.template)
279
+ template.system_message = self.system_message
280
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
281
+ # print("##############2.5################")
282
+ # print(template.sep.strip())
283
+ # print(eos_token_id)
284
+ # print("##############2.5################")
285
+
286
+ history = [] if history is None else history
287
+ for (old_question, old_answer) in history:
288
+ template.append_message(template.roles[0], old_question)
289
+ template.append_message(template.roles[1], old_answer)
290
+ template.append_message(template.roles[0], question)
291
+ template.append_message(template.roles[1], None)
292
+ query = template.get_prompt()
293
+ # print("##############3################")
294
+ # print(query)
295
+ # print("##############3################")
296
+ # query = """<|begin▁of▁sentence|>user
297
+ # <image>
298
+ # 图片内容是什么?<|end▁of▁sentence|>
299
+ # <|begin▁of▁sentence|>assistant"""
300
+
301
+ if verbose and pixel_values is not None:
302
+ image_bs = pixel_values.shape[0]
303
+ print(f'dynamic ViT batch size: {image_bs}')
304
+
305
+ for num_patches in num_patches_list:
306
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
307
+ query = query.replace('<image>', image_tokens, 1)
308
+ # print("##############4################")
309
+ # # print(query)
310
+ # print("##############4################")
311
+
312
+ model_inputs = tokenizer(query, return_tensors='pt')
313
+ input_ids = model_inputs['input_ids'].to(self.device)
314
+ attention_mask = model_inputs['attention_mask'].to(self.device)
315
+ generation_config['eos_token_id'] = eos_token_id
316
+ generation_output = self.generate(
317
+ pixel_values=pixel_values,
318
+ input_ids=input_ids,
319
+ attention_mask=attention_mask,
320
+ **generation_config
321
+ )
322
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
323
+ response = response.split(template.sep.strip())[0].strip()
324
+ history.append((question, response))
325
+ # print("###" + str(response))
326
+ if return_history:
327
+ return response, history
328
+ else:
329
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
330
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
331
+ if verbose:
332
+ print(query_to_print, response)
333
+ return response
334
+
335
+ @torch.no_grad()
336
+ def generate(
337
+ self,
338
+ pixel_values: Optional[torch.FloatTensor] = None,
339
+ input_ids: Optional[torch.FloatTensor] = None,
340
+ attention_mask: Optional[torch.LongTensor] = None,
341
+ visual_features: Optional[torch.FloatTensor] = None,
342
+ generation_config: Optional[GenerationConfig] = None,
343
+ output_hidden_states: Optional[bool] = None,
344
+ **generate_kwargs,
345
+ ) -> torch.LongTensor:
346
+
347
+ assert self.img_context_token_id is not None
348
+ if pixel_values is not None:
349
+ if visual_features is not None:
350
+ vit_embeds = visual_features
351
+ else:
352
+ vit_embeds = self.extract_feature(pixel_values)
353
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
354
+ B, N, C = input_embeds.shape
355
+ input_embeds = input_embeds.reshape(B * N, C)
356
+
357
+ input_ids = input_ids.reshape(B * N)
358
+ selected = (input_ids == self.img_context_token_id)
359
+ # print("#######################5####################")
360
+ # print(self.img_context_token_id)
361
+ # print(selected)
362
+ # print(selected.sum())
363
+ # print("#######################5####################")
364
+ # exit()
365
+ assert selected.sum() != 0
366
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
367
+
368
+ input_embeds = input_embeds.reshape(B, N, C)
369
+ else:
370
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
371
+
372
+ # print("#######################6####################")
373
+ # print(attention_mask)
374
+ # print(attention_mask.sum())
375
+ # print(output_hidden_states)
376
+ # print("#######################6####################")
377
+
378
+ outputs = self.language_model.generate(
379
+ inputs_embeds=input_embeds,
380
+ attention_mask=attention_mask,
381
+ generation_config=generation_config,
382
+ output_hidden_states=output_hidden_states,
383
+ use_cache=True,
384
+ **generate_kwargs,
385
+ )
386
+
387
+ return outputs
modeling_skywork_chat.py ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+ import re
3
+ from typing import List, Optional, Tuple, Union
4
+
5
+ import torch.utils.checkpoint
6
+ import transformers
7
+ from torch import nn
8
+ from torch.nn import CrossEntropyLoss
9
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
10
+ LlamaTokenizer)
11
+ from transformers.modeling_outputs import CausalLMOutputWithPast
12
+ from transformers.modeling_utils import PreTrainedModel
13
+ from transformers.utils import ModelOutput, logging
14
+
15
+ from .configuration_skywork_chat import SkyworkChatConfig
16
+ from .conversation import get_conv_template
17
+ from .modeling_skywork_vit import SkyworkVisionModel, has_flash_attn
18
+ from .modeling_skywork_lm2 import SkyworkLM2ForCausalLM
19
+
20
+ from transformers import Qwen2Config, Qwen2ForCausalLM
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ def version_cmp(v1, v2, op='eq'):
26
+ import operator
27
+
28
+ from packaging import version
29
+ op_func = getattr(operator, op)
30
+ return op_func(version.parse(v1), version.parse(v2))
31
+
32
+
33
+ class SkyworkChatModel(PreTrainedModel):
34
+ config_class = SkyworkChatConfig
35
+ main_input_name = 'pixel_values'
36
+ base_model_prefix = 'language_model'
37
+ _supports_flash_attn_2 = True
38
+ _no_split_modules = ['SkyworkVisionModel', 'LlamaDecoderLayer', 'SkyworkLM2DecoderLayer']
39
+
40
+ def __init__(self, config: SkyworkChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
41
+ super().__init__(config)
42
+
43
+ assert version_cmp(transformers.__version__, '4.36.2', 'ge')
44
+ image_size = config.force_image_size or config.vision_config.image_size
45
+ patch_size = config.vision_config.patch_size
46
+ self.patch_size = patch_size
47
+ self.select_layer = config.select_layer
48
+ self.template = config.template
49
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
50
+ self.downsample_ratio = config.downsample_ratio
51
+ self.ps_version = config.ps_version
52
+ use_flash_attn = use_flash_attn if has_flash_attn else False
53
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
54
+ config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
55
+
56
+ logger.info(f'num_image_token: {self.num_image_token}')
57
+ logger.info(f'ps_version: {self.ps_version}')
58
+ if vision_model is not None:
59
+ self.vision_model = vision_model
60
+ else:
61
+ self.vision_model = SkyworkVisionModel(config.vision_config)
62
+ if language_model is not None:
63
+ self.language_model = language_model
64
+ else:
65
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
66
+ self.language_model = LlamaForCausalLM(config.llm_config)
67
+ elif config.llm_config.architectures[0] == 'SkyworkLM2ForCausalLM':
68
+ self.language_model = SkyworkLM2ForCausalLM(config.llm_config)
69
+ elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
70
+ self.language_model = Qwen2ForCausalLM(config.llm_config)
71
+ else:
72
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
73
+
74
+ vit_hidden_size = config.vision_config.hidden_size
75
+ llm_hidden_size = config.llm_config.hidden_size
76
+
77
+ self.mlp1 = nn.Sequential(
78
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
79
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
80
+ nn.GELU(),
81
+ nn.Linear(llm_hidden_size, llm_hidden_size)
82
+ )
83
+
84
+ self.img_context_token_id = None
85
+ self.conv_template = get_conv_template(self.template)
86
+ self.system_message = self.conv_template.system_message
87
+
88
+ def forward(
89
+ self,
90
+ pixel_values: torch.FloatTensor,
91
+ input_ids: torch.LongTensor = None,
92
+ attention_mask: Optional[torch.Tensor] = None,
93
+ position_ids: Optional[torch.LongTensor] = None,
94
+ image_flags: Optional[torch.LongTensor] = None,
95
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
96
+ labels: Optional[torch.LongTensor] = None,
97
+ use_cache: Optional[bool] = None,
98
+ output_attentions: Optional[bool] = None,
99
+ output_hidden_states: Optional[bool] = None,
100
+ return_dict: Optional[bool] = None,
101
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
102
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
103
+
104
+ image_flags = image_flags.squeeze(-1)
105
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
106
+
107
+ vit_embeds = self.extract_feature(pixel_values)
108
+ vit_embeds = vit_embeds[image_flags == 1]
109
+ vit_batch_size = pixel_values.shape[0]
110
+
111
+ B, N, C = input_embeds.shape
112
+ input_embeds = input_embeds.reshape(B * N, C)
113
+
114
+ if torch.distributed.get_rank() == 0:
115
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
116
+
117
+ input_ids = input_ids.reshape(B * N)
118
+ selected = (input_ids == self.img_context_token_id)
119
+ try:
120
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
121
+ except Exception as e:
122
+ vit_embeds = vit_embeds.reshape(-1, C)
123
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
124
+ f'vit_embeds.shape={vit_embeds.shape}')
125
+ n_token = selected.sum()
126
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
127
+
128
+ input_embeds = input_embeds.reshape(B, N, C)
129
+
130
+ outputs = self.language_model(
131
+ inputs_embeds=input_embeds,
132
+ attention_mask=attention_mask,
133
+ position_ids=position_ids,
134
+ past_key_values=past_key_values,
135
+ use_cache=use_cache,
136
+ output_attentions=output_attentions,
137
+ output_hidden_states=output_hidden_states,
138
+ return_dict=return_dict,
139
+ )
140
+ logits = outputs.logits
141
+
142
+ loss = None
143
+ if labels is not None:
144
+ # Shift so that tokens < n predict n
145
+ shift_logits = logits[..., :-1, :].contiguous()
146
+ shift_labels = labels[..., 1:].contiguous()
147
+ # Flatten the tokens
148
+ loss_fct = CrossEntropyLoss()
149
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
150
+ shift_labels = shift_labels.view(-1)
151
+ # Enable model parallelism
152
+ shift_labels = shift_labels.to(shift_logits.device)
153
+ loss = loss_fct(shift_logits, shift_labels)
154
+
155
+ if not return_dict:
156
+ output = (logits,) + outputs[1:]
157
+ return (loss,) + output if loss is not None else output
158
+
159
+ return CausalLMOutputWithPast(
160
+ loss=loss,
161
+ logits=logits,
162
+ past_key_values=outputs.past_key_values,
163
+ hidden_states=outputs.hidden_states,
164
+ attentions=outputs.attentions,
165
+ )
166
+
167
+ def pixel_shuffle(self, x, scale_factor=0.5):
168
+ n, w, h, c = x.size()
169
+ # N, W, H, C --> N, W, H * scale, C // scale
170
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
171
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
172
+ x = x.permute(0, 2, 1, 3).contiguous()
173
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
174
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
175
+ int(c / (scale_factor * scale_factor)))
176
+ if self.ps_version == 'v1':
177
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
178
+ 'which results in a transposed image.')
179
+ else:
180
+ x = x.permute(0, 2, 1, 3).contiguous()
181
+ return x
182
+
183
+ def extract_feature(self, pixel_values):
184
+ if self.select_layer == -1:
185
+ vit_embeds = self.vision_model(
186
+ pixel_values=pixel_values,
187
+ output_hidden_states=False,
188
+ return_dict=True).last_hidden_state
189
+ else:
190
+ vit_embeds = self.vision_model(
191
+ pixel_values=pixel_values,
192
+ output_hidden_states=True,
193
+ return_dict=True).hidden_states[self.select_layer]
194
+ vit_embeds = vit_embeds[:, 1:, :]
195
+
196
+ h = w = int(vit_embeds.shape[1] ** 0.5)
197
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
198
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
199
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
200
+ vit_embeds = self.mlp1(vit_embeds)
201
+ return vit_embeds
202
+
203
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
204
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
205
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
206
+ if history is not None or return_history:
207
+ print('Now multi-turn chat is not supported in batch_chat.')
208
+ raise NotImplementedError
209
+
210
+ if image_counts is not None:
211
+ num_patches_list = image_counts
212
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
213
+
214
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
215
+ self.img_context_token_id = img_context_token_id
216
+
217
+
218
+ if verbose and pixel_values is not None:
219
+ image_bs = pixel_values.shape[0]
220
+ print(f'dynamic ViT batch size: {image_bs}')
221
+
222
+ queries = []
223
+ for idx, num_patches in enumerate(num_patches_list):
224
+ question = questions[idx]
225
+ if pixel_values is not None and '<image>' not in question:
226
+ question = '<image>\n' + question
227
+ template = get_conv_template(self.template)
228
+ template.system_message = self.system_message
229
+ template.append_message(template.roles[0], question)
230
+ template.append_message(template.roles[1], None)
231
+ query = template.get_prompt()
232
+
233
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
234
+ query = query.replace('<image>', image_tokens, 1)
235
+ queries.append(query)
236
+
237
+ tokenizer.padding_side = 'left'
238
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
239
+ input_ids = model_inputs['input_ids'].to(self.device)
240
+ attention_mask = model_inputs['attention_mask'].to(self.device)
241
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
242
+ generation_config['eos_token_id'] = eos_token_id
243
+ generation_output = self.generate(
244
+ pixel_values=pixel_values,
245
+ input_ids=input_ids,
246
+ attention_mask=attention_mask,
247
+ **generation_config
248
+ )
249
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
250
+ responses = [response.split(template.sep.strip())[0].strip() for response in responses]
251
+ return responses
252
+
253
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
254
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
255
+ verbose=False, mode="think"):
256
+
257
+ if history is None and pixel_values is not None and '<image>' not in question:
258
+ question = '<image>\n' + question
259
+
260
+ if num_patches_list is None:
261
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
262
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
263
+
264
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
265
+ self.img_context_token_id = img_context_token_id
266
+
267
+ template = get_conv_template(self.template)
268
+ template.system_message = self.system_message
269
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
270
+
271
+
272
+ history = [] if history is None else history
273
+ for (old_question, old_answer) in history:
274
+ template.append_message(template.roles[0], old_question)
275
+ template.append_message(template.roles[1], old_answer)
276
+ template.append_message(template.roles[0], question)
277
+ template.append_message(template.roles[1], None)
278
+ query = template.get_prompt()
279
+ if mode != "think":
280
+ query = re.sub(r'\n<think>', '', query, count=1)
281
+
282
+
283
+ if verbose and pixel_values is not None:
284
+ image_bs = pixel_values.shape[0]
285
+ print(f'dynamic ViT batch size: {image_bs}')
286
+
287
+ for num_patches in num_patches_list:
288
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
289
+ query = query.replace('<image>', image_tokens, 1)
290
+
291
+
292
+ model_inputs = tokenizer(query, return_tensors='pt')
293
+ input_ids = model_inputs['input_ids'].to(self.device)
294
+ attention_mask = model_inputs['attention_mask'].to(self.device)
295
+ generation_config['eos_token_id'] = eos_token_id
296
+ generation_output = self.generate(
297
+ pixel_values=pixel_values,
298
+ input_ids=input_ids,
299
+ attention_mask=attention_mask,
300
+ **generation_config
301
+ )
302
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
303
+ response = response.split(template.sep.strip())[0].strip()
304
+ history.append((question, response))
305
+
306
+ if return_history:
307
+ return response, history
308
+ else:
309
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
310
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
311
+ if verbose:
312
+ print(query_to_print, response)
313
+ return response
314
+
315
+ @torch.no_grad()
316
+ def generate(
317
+ self,
318
+ pixel_values: Optional[torch.FloatTensor] = None,
319
+ input_ids: Optional[torch.FloatTensor] = None,
320
+ attention_mask: Optional[torch.LongTensor] = None,
321
+ visual_features: Optional[torch.FloatTensor] = None,
322
+ generation_config: Optional[GenerationConfig] = None,
323
+ output_hidden_states: Optional[bool] = None,
324
+ **generate_kwargs,
325
+ ) -> torch.LongTensor:
326
+
327
+ assert self.img_context_token_id is not None
328
+ if pixel_values is not None:
329
+ if visual_features is not None:
330
+ vit_embeds = visual_features
331
+ else:
332
+ vit_embeds = self.extract_feature(pixel_values)
333
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
334
+ B, N, C = input_embeds.shape
335
+ input_embeds = input_embeds.reshape(B * N, C)
336
+
337
+ input_ids = input_ids.reshape(B * N)
338
+ selected = (input_ids == self.img_context_token_id)
339
+
340
+ assert selected.sum() != 0
341
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
342
+
343
+ input_embeds = input_embeds.reshape(B, N, C)
344
+ else:
345
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
346
+
347
+
348
+ outputs = self.language_model.generate(
349
+ inputs_embeds=input_embeds,
350
+ attention_mask=attention_mask,
351
+ generation_config=generation_config,
352
+ output_hidden_states=output_hidden_states,
353
+ use_cache=True,
354
+ **generate_kwargs,
355
+ )
356
+
357
+ return outputs
modeling_skywork_lm2.py ADDED
@@ -0,0 +1,1380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The Skywork team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch SkyworkLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except:
41
+ BaseStreamer = None
42
+
43
+ from .configuration_skywork_lm2 import SkyworkLM2Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = 'SkyworkLM2Config'
48
+
49
+ flash_attn_func, flash_attn_varlen_func = None, None
50
+ pad_input, index_first_axis, unpad_input = None, None, None
51
+ try:
52
+ from flash_attn import flash_attn_func as _flash_attn_func
53
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
54
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
55
+ from flash_attn.bert_padding import pad_input as _pad_input
56
+ from flash_attn.bert_padding import unpad_input as _unpad_input
57
+
58
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
59
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
60
+ has_flash_attn = True
61
+ except:
62
+ has_flash_attn = False
63
+
64
+
65
+ def _import_flash_attn():
66
+ global flash_attn_func, flash_attn_varlen_func
67
+ global pad_input, index_first_axis, unpad_input
68
+ try:
69
+ from flash_attn import flash_attn_func as _flash_attn_func
70
+ from flash_attn import \
71
+ flash_attn_varlen_func as _flash_attn_varlen_func
72
+ from flash_attn.bert_padding import \
73
+ index_first_axis as _index_first_axis
74
+ from flash_attn.bert_padding import pad_input as _pad_input
75
+ from flash_attn.bert_padding import unpad_input as _unpad_input
76
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
77
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
78
+ except ImportError:
79
+ raise ImportError('flash_attn is not installed.')
80
+
81
+
82
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
83
+ def _get_unpad_data(attention_mask):
84
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
85
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
86
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
87
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
88
+ return (
89
+ indices,
90
+ cu_seqlens,
91
+ max_seqlen_in_batch,
92
+ )
93
+
94
+
95
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
96
+ def _make_causal_mask(
97
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
98
+ ):
99
+ """
100
+ Make causal mask used for bi-directional self-attention.
101
+ """
102
+ bsz, tgt_len = input_ids_shape
103
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
104
+ mask_cond = torch.arange(mask.size(-1), device=device)
105
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
106
+ mask = mask.to(dtype)
107
+
108
+ if past_key_values_length > 0:
109
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
110
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
111
+
112
+
113
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
114
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
115
+ """
116
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
117
+ """
118
+ bsz, src_len = mask.size()
119
+ tgt_len = tgt_len if tgt_len is not None else src_len
120
+
121
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
122
+
123
+ inverted_mask = 1.0 - expanded_mask
124
+
125
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
126
+
127
+
128
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->SkyworkLM2
129
+ class SkyworkLM2RMSNorm(nn.Module):
130
+ def __init__(self, hidden_size, eps=1e-6):
131
+ """
132
+ SkyworkLM2RMSNorm is equivalent to T5LayerNorm
133
+ """
134
+ super().__init__()
135
+ self.weight = nn.Parameter(torch.ones(hidden_size))
136
+ self.variance_epsilon = eps
137
+
138
+ def forward(self, hidden_states):
139
+ input_dtype = hidden_states.dtype
140
+ hidden_states = hidden_states.to(torch.float32)
141
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
142
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
143
+ return self.weight * hidden_states.to(input_dtype)
144
+
145
+
146
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->SkyworkLM2
147
+ class SkyworkLM2RotaryEmbedding(nn.Module):
148
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
149
+ super().__init__()
150
+
151
+ self.dim = dim
152
+ self.max_position_embeddings = max_position_embeddings
153
+ self.base = base
154
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
155
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
156
+
157
+ # Build here to make `torch.jit.trace` work.
158
+ self._set_cos_sin_cache(
159
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
160
+ )
161
+
162
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
163
+ self.max_seq_len_cached = seq_len
164
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
165
+
166
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
167
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
168
+ emb = torch.cat((freqs, freqs), dim=-1)
169
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
170
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
171
+
172
+ def forward(self, x, seq_len=None):
173
+ # x: [bs, num_attention_heads, seq_len, head_size]
174
+ if seq_len > self.max_seq_len_cached:
175
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
176
+
177
+ return (
178
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
179
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
180
+ )
181
+
182
+
183
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->SkyworkLM2
184
+ class SkyworkLM2LinearScalingRotaryEmbedding(SkyworkLM2RotaryEmbedding):
185
+
186
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
187
+ self.scaling_factor = scaling_factor
188
+ super().__init__(dim, max_position_embeddings, base, device)
189
+
190
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
191
+ self.max_seq_len_cached = seq_len
192
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
193
+ t = t / self.scaling_factor
194
+
195
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
196
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
197
+ emb = torch.cat((freqs, freqs), dim=-1)
198
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
199
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
200
+
201
+
202
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->SkyworkLM2
203
+ class SkyworkLM2DynamicNTKScalingRotaryEmbedding(SkyworkLM2RotaryEmbedding):
204
+
205
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
206
+ self.scaling_factor = scaling_factor
207
+ super().__init__(dim, max_position_embeddings, base, device)
208
+
209
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
210
+ self.max_seq_len_cached = seq_len
211
+
212
+ if seq_len > self.max_position_embeddings:
213
+ base = self.base * (
214
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
215
+ ) ** (self.dim / (self.dim - 2))
216
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
217
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
218
+
219
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
220
+
221
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
222
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
223
+ emb = torch.cat((freqs, freqs), dim=-1)
224
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
225
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
226
+
227
+
228
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
229
+ def rotate_half(x):
230
+ """Rotates half the hidden dims of the input."""
231
+ x1 = x[..., : x.shape[-1] // 2]
232
+ x2 = x[..., x.shape[-1] // 2 :]
233
+ return torch.cat((-x2, x1), dim=-1)
234
+
235
+
236
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
237
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
238
+ """Applies Rotary Position Embedding to the query and key tensors."""
239
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
240
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
241
+ q_embed = (q * cos) + (rotate_half(q) * sin)
242
+ k_embed = (k * cos) + (rotate_half(k) * sin)
243
+ return q_embed, k_embed
244
+
245
+
246
+ class SkyworkLM2MLP(nn.Module):
247
+ def __init__(self, config):
248
+ super().__init__()
249
+ self.config = config
250
+ self.hidden_size = config.hidden_size
251
+ self.intermediate_size = config.intermediate_size
252
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
253
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
254
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
255
+ self.act_fn = ACT2FN[config.hidden_act]
256
+
257
+ def forward(self, x):
258
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
259
+
260
+ return down_proj
261
+
262
+
263
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
264
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
265
+ """
266
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
267
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
268
+ """
269
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
270
+ if n_rep == 1:
271
+ return hidden_states
272
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
273
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
274
+
275
+
276
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
277
+ class SkyworkLM2Attention(nn.Module):
278
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
279
+
280
+ def __init__(self, config: SkyworkLM2Config):
281
+ super().__init__()
282
+ self.config = config
283
+ self.hidden_size = config.hidden_size
284
+ self.num_heads = config.num_attention_heads
285
+ self.head_dim = self.hidden_size // self.num_heads
286
+ self.num_key_value_heads = config.num_key_value_heads
287
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
288
+ self.max_position_embeddings = config.max_position_embeddings
289
+ self.is_causal = True
290
+
291
+ if (self.head_dim * self.num_heads) != self.hidden_size:
292
+ raise ValueError(
293
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
294
+ f' and `num_heads`: {self.num_heads}).'
295
+ )
296
+
297
+ self.wqkv = nn.Linear(
298
+ self.hidden_size,
299
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
300
+ bias=config.bias,
301
+ )
302
+
303
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
304
+ self._init_rope()
305
+
306
+ def _init_rope(self):
307
+ if self.config.rope_scaling is None:
308
+ self.rotary_emb = SkyworkLM2RotaryEmbedding(
309
+ self.head_dim,
310
+ max_position_embeddings=self.max_position_embeddings,
311
+ base=self.config.rope_theta,
312
+ )
313
+ else:
314
+ scaling_type = self.config.rope_scaling['type']
315
+ scaling_factor = self.config.rope_scaling['factor']
316
+ if scaling_type == 'dynamic':
317
+ self.rotary_emb = SkyworkLM2DynamicNTKScalingRotaryEmbedding(
318
+ self.head_dim,
319
+ max_position_embeddings=self.max_position_embeddings,
320
+ base=self.config.rope_theta,
321
+ scaling_factor=scaling_factor,
322
+ )
323
+ elif scaling_type == 'linear':
324
+ self.rotary_emb = SkyworkLM2LinearScalingRotaryEmbedding(
325
+ self.head_dim,
326
+ max_position_embeddings=self.max_position_embeddings,
327
+ base=self.config.rope_theta,
328
+ scaling_factor=scaling_factor,
329
+ )
330
+ else:
331
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
332
+ return self.rotary_emb
333
+
334
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
335
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
336
+
337
+ def forward(
338
+ self,
339
+ hidden_states: torch.Tensor,
340
+ attention_mask: Optional[torch.Tensor] = None,
341
+ position_ids: Optional[torch.LongTensor] = None,
342
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
343
+ output_attentions: bool = False,
344
+ use_cache: bool = False,
345
+ **kwargs,
346
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
347
+ if 'padding_mask' in kwargs:
348
+ warnings.warn(
349
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
350
+ 'Please make sure use `attention_mask` instead.`'
351
+ )
352
+
353
+ bsz, q_len, _ = hidden_states.size()
354
+
355
+ qkv_states = self.wqkv(hidden_states)
356
+
357
+ qkv_states = rearrange(
358
+ qkv_states,
359
+ 'b q (h gs d) -> b q h gs d',
360
+ gs=2 + self.num_key_value_groups,
361
+ d=self.head_dim,
362
+ )
363
+
364
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
365
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
366
+ key_states = qkv_states[..., -2, :]
367
+ value_states = qkv_states[..., -1, :]
368
+
369
+ query_states = query_states.transpose(1, 2)
370
+ key_states = key_states.transpose(1, 2)
371
+ value_states = value_states.transpose(1, 2)
372
+
373
+ kv_seq_len = key_states.shape[-2]
374
+ if past_key_value is not None:
375
+ kv_seq_len += past_key_value[0].shape[-2]
376
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
377
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
378
+
379
+ if past_key_value is not None:
380
+ # reuse k, v, self_attention
381
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
382
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
383
+
384
+ past_key_value = (key_states, value_states) if use_cache else None
385
+
386
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
387
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
388
+
389
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
390
+
391
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
392
+ raise ValueError(
393
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
394
+ f' {attn_weights.size()}'
395
+ )
396
+
397
+ if attention_mask is not None:
398
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
399
+ raise ValueError(
400
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
401
+ )
402
+ attn_weights = attn_weights + attention_mask
403
+
404
+ # upcast attention to fp32
405
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
406
+ attn_output = torch.matmul(attn_weights, value_states)
407
+
408
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
409
+ raise ValueError(
410
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
411
+ f' {attn_output.size()}'
412
+ )
413
+
414
+ attn_output = attn_output.transpose(1, 2).contiguous()
415
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
416
+
417
+ attn_output = self.wo(attn_output)
418
+
419
+ if not output_attentions:
420
+ attn_weights = None
421
+
422
+ return attn_output, attn_weights, past_key_value
423
+
424
+
425
+ # Modified from transformers.model.llama.modeling_llama.SkyworkLM2FlashAttention2
426
+ class SkyworkLM2FlashAttention2(SkyworkLM2Attention):
427
+
428
+ def forward(
429
+ self,
430
+ hidden_states: torch.Tensor,
431
+ attention_mask: Optional[torch.LongTensor] = None,
432
+ position_ids: Optional[torch.LongTensor] = None,
433
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
434
+ output_attentions: bool = False,
435
+ use_cache: bool = False,
436
+ **kwargs,
437
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
438
+ if 'padding_mask' in kwargs:
439
+ warnings.warn(
440
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
441
+ 'Please make sure use `attention_mask` instead.`'
442
+ )
443
+
444
+ # overwrite attention_mask with padding_mask
445
+ attention_mask = kwargs.pop('padding_mask')
446
+
447
+ output_attentions = False
448
+
449
+ bsz, q_len, _ = hidden_states.size()
450
+
451
+ qkv_states = self.wqkv(hidden_states)
452
+
453
+ qkv_states = rearrange(
454
+ qkv_states,
455
+ 'b q (h gs d) -> b q h gs d',
456
+ gs=2 + self.num_key_value_groups,
457
+ d=self.head_dim,
458
+ )
459
+
460
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
461
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
462
+ key_states = qkv_states[..., -2, :]
463
+ value_states = qkv_states[..., -1, :]
464
+
465
+ query_states = query_states.transpose(1, 2)
466
+ key_states = key_states.transpose(1, 2)
467
+ value_states = value_states.transpose(1, 2)
468
+
469
+ kv_seq_len = key_states.shape[-2]
470
+ if past_key_value is not None:
471
+ kv_seq_len += past_key_value[0].shape[-2]
472
+
473
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
474
+
475
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
476
+
477
+ if past_key_value is not None:
478
+ # reuse k, v, self_attention
479
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
480
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
481
+
482
+ past_key_value = (key_states, value_states) if use_cache else None
483
+
484
+ query_states = query_states.transpose(1, 2)
485
+ key_states = key_states.transpose(1, 2)
486
+ value_states = value_states.transpose(1, 2)
487
+
488
+ attn_output = self._flash_attention_forward(
489
+ query_states, key_states, value_states, attention_mask, q_len
490
+ )
491
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
492
+ attn_output = self.wo(attn_output)
493
+
494
+ if not output_attentions:
495
+ attn_weights = None
496
+
497
+ return attn_output, attn_weights, past_key_value
498
+
499
+ def _flash_attention_forward(
500
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
501
+ ):
502
+ """
503
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
504
+ first unpad the input, then computes the attention scores and pad the final attention scores.
505
+ Args:
506
+ query_states (`torch.Tensor`):
507
+ Input query states to be passed to Flash Attention API
508
+ key_states (`torch.Tensor`):
509
+ Input key states to be passed to Flash Attention API
510
+ value_states (`torch.Tensor`):
511
+ Input value states to be passed to Flash Attention API
512
+ attention_mask (`torch.Tensor`):
513
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
514
+ position of padding tokens and 1 for the position of non-padding tokens.
515
+ dropout (`int`, *optional*):
516
+ Attention dropout
517
+ softmax_scale (`float`, *optional*):
518
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
519
+ """
520
+ # Contains at least one padding token in the sequence
521
+ causal = self.is_causal and query_length != 1
522
+ if attention_mask is not None:
523
+ batch_size = query_states.shape[0]
524
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
525
+ query_states, key_states, value_states, attention_mask, query_length
526
+ )
527
+
528
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
529
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
530
+
531
+ attn_output_unpad = flash_attn_varlen_func(
532
+ query_states,
533
+ key_states,
534
+ value_states,
535
+ cu_seqlens_q=cu_seqlens_q,
536
+ cu_seqlens_k=cu_seqlens_k,
537
+ max_seqlen_q=max_seqlen_in_batch_q,
538
+ max_seqlen_k=max_seqlen_in_batch_k,
539
+ dropout_p=dropout,
540
+ softmax_scale=softmax_scale,
541
+ causal=causal,
542
+ )
543
+
544
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
545
+ else:
546
+ attn_output = flash_attn_func(
547
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
548
+ )
549
+
550
+ return attn_output
551
+
552
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
553
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
554
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
555
+
556
+ key_layer = index_first_axis(
557
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
558
+ )
559
+ value_layer = index_first_axis(
560
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
561
+ )
562
+
563
+ if query_length == kv_seq_len:
564
+ query_layer = index_first_axis(
565
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
566
+ )
567
+ cu_seqlens_q = cu_seqlens_k
568
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
569
+ indices_q = indices_k
570
+ elif query_length == 1:
571
+ max_seqlen_in_batch_q = 1
572
+ cu_seqlens_q = torch.arange(
573
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
574
+ ) # There is a memcpy here, that is very bad.
575
+ indices_q = cu_seqlens_q[:-1]
576
+ query_layer = query_layer.squeeze(1)
577
+ else:
578
+ # The -q_len: slice assumes left padding.
579
+ attention_mask = attention_mask[:, -query_length:]
580
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
581
+
582
+ return (
583
+ query_layer,
584
+ key_layer,
585
+ value_layer,
586
+ indices_q.to(torch.int64),
587
+ (cu_seqlens_q, cu_seqlens_k),
588
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
589
+ )
590
+
591
+
592
+ INTERNLM2_ATTENTION_CLASSES = {
593
+ 'eager': SkyworkLM2Attention,
594
+ 'flash_attention_2': SkyworkLM2FlashAttention2,
595
+ }
596
+
597
+
598
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
599
+ class SkyworkLM2DecoderLayer(nn.Module):
600
+ def __init__(self, config: SkyworkLM2Config):
601
+ super().__init__()
602
+ self.hidden_size = config.hidden_size
603
+
604
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
605
+
606
+ self.feed_forward = SkyworkLM2MLP(config)
607
+ self.attention_norm = SkyworkLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
608
+ self.ffn_norm = SkyworkLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
609
+
610
+ def forward(
611
+ self,
612
+ hidden_states: torch.Tensor,
613
+ attention_mask: Optional[torch.Tensor] = None,
614
+ position_ids: Optional[torch.LongTensor] = None,
615
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
616
+ output_attentions: Optional[bool] = False,
617
+ use_cache: Optional[bool] = False,
618
+ **kwargs,
619
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
620
+ """
621
+ Args:
622
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
623
+ attention_mask (`torch.FloatTensor`, *optional*):
624
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
625
+ query_sequence_length, key_sequence_length)` if default attention is used.
626
+ output_attentions (`bool`, *optional*):
627
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
628
+ returned tensors for more detail.
629
+ use_cache (`bool`, *optional*):
630
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
631
+ (see `past_key_values`).
632
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
633
+ """
634
+ if 'padding_mask' in kwargs:
635
+ warnings.warn(
636
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
637
+ 'Please make sure use `attention_mask` instead.`'
638
+ )
639
+
640
+ residual = hidden_states
641
+
642
+ hidden_states = self.attention_norm(hidden_states)
643
+
644
+ # Self Attention
645
+ hidden_states, self_attn_weights, present_key_value = self.attention(
646
+ hidden_states=hidden_states,
647
+ attention_mask=attention_mask,
648
+ position_ids=position_ids,
649
+ past_key_value=past_key_value,
650
+ output_attentions=output_attentions,
651
+ use_cache=use_cache,
652
+ **kwargs,
653
+ )
654
+ hidden_states = residual + hidden_states
655
+
656
+ # Fully Connected
657
+ residual = hidden_states
658
+ hidden_states = self.ffn_norm(hidden_states)
659
+ hidden_states = self.feed_forward(hidden_states)
660
+ hidden_states = residual + hidden_states
661
+
662
+ outputs = (hidden_states,)
663
+
664
+ if output_attentions:
665
+ outputs += (self_attn_weights,)
666
+
667
+ if use_cache:
668
+ outputs += (present_key_value,)
669
+
670
+ return outputs
671
+
672
+
673
+ SkyworkLM2_START_DOCSTRING = r"""
674
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
675
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
676
+ etc.)
677
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
678
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
679
+ and behavior.
680
+ Parameters:
681
+ config ([`SkyworkLM2Config`]):
682
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
683
+ load the weights associated with the model, only the configuration. Check out the
684
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
685
+ """
686
+
687
+
688
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->SkyworkLM2
689
+ @add_start_docstrings(
690
+ 'The bare SkyworkLM2 Model outputting raw hidden-states without any specific head on top.',
691
+ SkyworkLM2_START_DOCSTRING,
692
+ )
693
+ class SkyworkLM2PreTrainedModel(PreTrainedModel):
694
+ config_class = SkyworkLM2Config
695
+ base_model_prefix = 'model'
696
+ supports_gradient_checkpointing = True
697
+ _no_split_modules = ['SkyworkLM2DecoderLayer']
698
+ _skip_keys_device_placement = 'past_key_values'
699
+ _supports_flash_attn_2 = True
700
+
701
+ def _init_weights(self, module):
702
+ std = self.config.initializer_range
703
+ if isinstance(module, nn.Linear):
704
+ module.weight.data.normal_(mean=0.0, std=std)
705
+ if module.bias is not None:
706
+ module.bias.data.zero_()
707
+ elif isinstance(module, nn.Embedding):
708
+ module.weight.data.normal_(mean=0.0, std=std)
709
+ if module.padding_idx is not None:
710
+ module.weight.data[module.padding_idx].zero_()
711
+
712
+
713
+ SkyworkLM2_INPUTS_DOCSTRING = r"""
714
+ Args:
715
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
716
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
717
+ it.
718
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
719
+ [`PreTrainedTokenizer.__call__`] for details.
720
+ [What are input IDs?](../glossary#input-ids)
721
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
722
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
723
+ - 1 for tokens that are **not masked**,
724
+ - 0 for tokens that are **masked**.
725
+ [What are attention masks?](../glossary#attention-mask)
726
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
727
+ [`PreTrainedTokenizer.__call__`] for details.
728
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
729
+ `past_key_values`).
730
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
731
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
732
+ information on the default strategy.
733
+ - 1 indicates the head is **not masked**,
734
+ - 0 indicates the head is **masked**.
735
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
736
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
737
+ config.n_positions - 1]`.
738
+ [What are position IDs?](../glossary#position-ids)
739
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
740
+ when `config.use_cache=True`):
741
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
742
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
743
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
744
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
745
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
746
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
747
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
748
+ of shape `(batch_size, sequence_length)`.
749
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
750
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
751
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
752
+ model's skywork embedding lookup matrix.
753
+ use_cache (`bool`, *optional*):
754
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
755
+ `past_key_values`).
756
+ output_attentions (`bool`, *optional*):
757
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
758
+ tensors for more detail.
759
+ output_hidden_states (`bool`, *optional*):
760
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
761
+ more detail.
762
+ return_dict (`bool`, *optional*):
763
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
764
+ """
765
+
766
+
767
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
768
+ @add_start_docstrings(
769
+ 'The bare SkyworkLM2 Model outputting raw hidden-states without any specific head on top.',
770
+ SkyworkLM2_START_DOCSTRING,
771
+ )
772
+ class SkyworkLM2Model(SkyworkLM2PreTrainedModel):
773
+ """
774
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`SkyworkLM2DecoderLayer`]
775
+ Args:
776
+ config: SkyworkLM2Config
777
+ """
778
+
779
+ _auto_class = 'AutoModel'
780
+
781
+ def __init__(self, config: SkyworkLM2Config):
782
+ super().__init__(config)
783
+ self.padding_idx = config.pad_token_id
784
+ self.vocab_size = config.vocab_size
785
+ self.config = config
786
+ if not has_flash_attn:
787
+ self.config.attn_implementation = 'eager'
788
+ print('Warning: Flash attention is not available, using eager attention instead.')
789
+
790
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
791
+
792
+ self.layers = nn.ModuleList([SkyworkLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
793
+ self.norm = SkyworkLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
794
+
795
+ self.gradient_checkpointing = False
796
+ # Initialize weights and apply final processing
797
+ self.post_init()
798
+
799
+ def get_input_embeddings(self):
800
+ return self.tok_embeddings
801
+
802
+ def set_input_embeddings(self, value):
803
+ self.tok_embeddings = value
804
+
805
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
806
+ # create causal mask
807
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
808
+ combined_attention_mask = None
809
+ if input_shape[-1] > 1:
810
+ combined_attention_mask = _make_causal_mask(
811
+ input_shape,
812
+ inputs_embeds.dtype,
813
+ device=inputs_embeds.device,
814
+ past_key_values_length=past_key_values_length,
815
+ )
816
+
817
+ if attention_mask is not None:
818
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
819
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
820
+ inputs_embeds.device
821
+ )
822
+ combined_attention_mask = (
823
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
824
+ )
825
+
826
+ return combined_attention_mask
827
+
828
+ @add_start_docstrings_to_model_forward(SkyworkLM2_INPUTS_DOCSTRING)
829
+ def forward(
830
+ self,
831
+ input_ids: torch.LongTensor = None,
832
+ attention_mask: Optional[torch.Tensor] = None,
833
+ position_ids: Optional[torch.LongTensor] = None,
834
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
835
+ inputs_embeds: Optional[torch.FloatTensor] = None,
836
+ use_cache: Optional[bool] = None,
837
+ output_attentions: Optional[bool] = None,
838
+ output_hidden_states: Optional[bool] = None,
839
+ return_dict: Optional[bool] = None,
840
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
841
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
842
+ output_hidden_states = (
843
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
844
+ )
845
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
846
+
847
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
848
+
849
+ if self.config.attn_implementation == 'flash_attention_2':
850
+ _import_flash_attn()
851
+
852
+ # retrieve input_ids and inputs_embeds
853
+ if input_ids is not None and inputs_embeds is not None:
854
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
855
+ elif input_ids is not None:
856
+ batch_size, seq_length = input_ids.shape[:2]
857
+ elif inputs_embeds is not None:
858
+ batch_size, seq_length = inputs_embeds.shape[:2]
859
+ else:
860
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
861
+
862
+ seq_length_with_past = seq_length
863
+ past_key_values_length = 0
864
+ if past_key_values is not None:
865
+ past_key_values_length = past_key_values[0][0].shape[2]
866
+ seq_length_with_past = seq_length_with_past + past_key_values_length
867
+
868
+ if position_ids is None:
869
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
870
+ position_ids = torch.arange(
871
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
872
+ )
873
+ position_ids = position_ids.unsqueeze(0)
874
+
875
+ if inputs_embeds is None:
876
+ inputs_embeds = self.tok_embeddings(input_ids)
877
+
878
+ if self.config.attn_implementation == 'flash_attention_2':
879
+ # 2d mask is passed through the layers
880
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
881
+ else:
882
+ if attention_mask is None:
883
+ attention_mask = torch.ones(
884
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
885
+ )
886
+ attention_mask = self._prepare_decoder_attention_mask(
887
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
888
+ )
889
+
890
+ # embed positions
891
+ hidden_states = inputs_embeds
892
+
893
+ if self.gradient_checkpointing and self.training:
894
+ if use_cache:
895
+ logger.warning_once(
896
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
897
+ )
898
+ use_cache = False
899
+
900
+ # decoder layers
901
+ all_hidden_states = () if output_hidden_states else None
902
+ all_self_attns = () if output_attentions else None
903
+ next_decoder_cache = () if use_cache else None
904
+
905
+ for idx, decoder_layer in enumerate(self.layers):
906
+ if output_hidden_states:
907
+ all_hidden_states += (hidden_states,)
908
+
909
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
910
+
911
+ if self.gradient_checkpointing and self.training:
912
+
913
+ def create_custom_forward(module):
914
+ def custom_forward(*inputs):
915
+ # None for past_key_value
916
+ return module(*inputs, output_attentions, None)
917
+
918
+ return custom_forward
919
+
920
+ layer_outputs = torch.utils.checkpoint.checkpoint(
921
+ create_custom_forward(decoder_layer),
922
+ hidden_states,
923
+ attention_mask,
924
+ position_ids,
925
+ None,
926
+ )
927
+ else:
928
+ layer_outputs = decoder_layer(
929
+ hidden_states,
930
+ attention_mask=attention_mask,
931
+ position_ids=position_ids,
932
+ past_key_value=past_key_value,
933
+ output_attentions=output_attentions,
934
+ use_cache=use_cache,
935
+ )
936
+
937
+ hidden_states = layer_outputs[0]
938
+
939
+ if use_cache:
940
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
941
+
942
+ if output_attentions:
943
+ all_self_attns += (layer_outputs[1],)
944
+
945
+ hidden_states = self.norm(hidden_states)
946
+
947
+ # add hidden states from the last decoder layer
948
+ if output_hidden_states:
949
+ all_hidden_states += (hidden_states,)
950
+
951
+ next_cache = next_decoder_cache if use_cache else None
952
+ if not return_dict:
953
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
954
+ return BaseModelOutputWithPast(
955
+ last_hidden_state=hidden_states,
956
+ past_key_values=next_cache,
957
+ hidden_states=all_hidden_states,
958
+ attentions=all_self_attns,
959
+ )
960
+
961
+
962
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
963
+ class SkyworkLM2ForCausalLM(SkyworkLM2PreTrainedModel):
964
+ _auto_class = 'AutoModelForCausalLM'
965
+
966
+ _tied_weights_keys = ['output.weight']
967
+
968
+ def __init__(self, config):
969
+ super().__init__(config)
970
+ self.model = SkyworkLM2Model(config)
971
+ self.vocab_size = config.vocab_size
972
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
973
+
974
+ # Initialize weights and apply final processing
975
+ self.post_init()
976
+
977
+ def get_input_embeddings(self):
978
+ return self.model.tok_embeddings
979
+
980
+ def set_input_embeddings(self, value):
981
+ self.model.tok_embeddings = value
982
+
983
+ def get_output_embeddings(self):
984
+ return self.output
985
+
986
+ def set_output_embeddings(self, new_embeddings):
987
+ self.output = new_embeddings
988
+
989
+ def set_decoder(self, decoder):
990
+ self.model = decoder
991
+
992
+ def get_decoder(self):
993
+ return self.model
994
+
995
+ @add_start_docstrings_to_model_forward(SkyworkLM2_INPUTS_DOCSTRING)
996
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
997
+ def forward(
998
+ self,
999
+ input_ids: torch.LongTensor = None,
1000
+ attention_mask: Optional[torch.Tensor] = None,
1001
+ position_ids: Optional[torch.LongTensor] = None,
1002
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1003
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1004
+ labels: Optional[torch.LongTensor] = None,
1005
+ use_cache: Optional[bool] = None,
1006
+ output_attentions: Optional[bool] = None,
1007
+ output_hidden_states: Optional[bool] = None,
1008
+ return_dict: Optional[bool] = None,
1009
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1010
+ r"""
1011
+ Args:
1012
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1013
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1014
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1015
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1016
+ Returns:
1017
+ Example:
1018
+ ```python
1019
+ >>> from transformers import AutoTokenizer, SkyworkLM2ForCausalLM
1020
+ >>> model = SkyworkLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1021
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1022
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1023
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1024
+ >>> # Generate
1025
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1026
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1027
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1028
+ ```"""
1029
+
1030
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1031
+ output_hidden_states = (
1032
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1033
+ )
1034
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1035
+
1036
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1037
+ outputs = self.model(
1038
+ input_ids=input_ids,
1039
+ attention_mask=attention_mask,
1040
+ position_ids=position_ids,
1041
+ past_key_values=past_key_values,
1042
+ inputs_embeds=inputs_embeds,
1043
+ use_cache=use_cache,
1044
+ output_attentions=output_attentions,
1045
+ output_hidden_states=output_hidden_states,
1046
+ return_dict=return_dict,
1047
+ )
1048
+
1049
+ hidden_states = outputs[0]
1050
+ logits = self.output(hidden_states)
1051
+ logits = logits.float()
1052
+
1053
+ loss = None
1054
+ if labels is not None:
1055
+ # Shift so that tokens < n predict n
1056
+ shift_logits = logits[..., :-1, :].contiguous()
1057
+ shift_labels = labels[..., 1:].contiguous()
1058
+ # Flatten the tokens
1059
+ loss_fct = CrossEntropyLoss()
1060
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1061
+ shift_labels = shift_labels.view(-1)
1062
+ # Enable model parallelism
1063
+ shift_labels = shift_labels.to(shift_logits.device)
1064
+ loss = loss_fct(shift_logits, shift_labels)
1065
+
1066
+ if not return_dict:
1067
+ output = (logits,) + outputs[1:]
1068
+ return (loss,) + output if loss is not None else output
1069
+
1070
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1071
+ output = CausalLMOutputWithPast(
1072
+ loss=loss,
1073
+ logits=logits,
1074
+ past_key_values=outputs.past_key_values,
1075
+ hidden_states=outputs.hidden_states,
1076
+ attentions=outputs.attentions,
1077
+ )
1078
+ output['logits'] = output['logits'].to(device)
1079
+ return output
1080
+
1081
+ def prepare_inputs_for_generation(
1082
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1083
+ ):
1084
+ if past_key_values is not None:
1085
+ past_length = past_key_values[0][0].shape[2]
1086
+
1087
+ # Some generation methods already pass only the last input ID
1088
+ if input_ids.shape[1] > past_length:
1089
+ remove_prefix_length = past_length
1090
+ else:
1091
+ # Default to old behavior: keep only final ID
1092
+ remove_prefix_length = input_ids.shape[1] - 1
1093
+
1094
+ input_ids = input_ids[:, remove_prefix_length:]
1095
+
1096
+ position_ids = kwargs.get('position_ids', None)
1097
+ if attention_mask is not None and position_ids is None:
1098
+ # create position_ids on the fly for batch generation
1099
+ position_ids = attention_mask.long().cumsum(-1) - 1
1100
+ position_ids.masked_fill_(attention_mask == 0, 1)
1101
+ if past_key_values:
1102
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1103
+
1104
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1105
+ if inputs_embeds is not None and past_key_values is None:
1106
+ model_inputs = {'inputs_embeds': inputs_embeds}
1107
+ else:
1108
+ model_inputs = {'input_ids': input_ids}
1109
+
1110
+ model_inputs.update(
1111
+ {
1112
+ 'position_ids': position_ids,
1113
+ 'past_key_values': past_key_values,
1114
+ 'use_cache': kwargs.get('use_cache'),
1115
+ 'attention_mask': attention_mask,
1116
+ }
1117
+ )
1118
+ return model_inputs
1119
+
1120
+ @staticmethod
1121
+ def _reorder_cache(past_key_values, beam_idx):
1122
+ reordered_past = ()
1123
+ for layer_past in past_key_values:
1124
+ reordered_past += (
1125
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1126
+ )
1127
+ return reordered_past
1128
+
1129
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''): #TODO
1130
+ if tokenizer.add_bos_token:
1131
+ prompt = ''
1132
+ else:
1133
+ prompt = tokenizer.bos_token
1134
+ if meta_instruction:
1135
+ prompt += f"""<|begin▁of▁sentence|>system\n{meta_instruction}<|end▁of▁sentence|>\n"""
1136
+ for record in history:
1137
+ prompt += f"""<|begin▁of▁sentence|>user\n{record[0]}<|end▁of▁sentence|>\n<|begin▁of▁sentence|>assistant\n{record[1]}<|end▁of▁sentence|>\n"""
1138
+ prompt += f"""<|begin▁of▁sentence|>user\n{query}<|end▁of▁sentence|>\n<|begin▁of▁sentence|>assistant\n"""
1139
+ return tokenizer([prompt], return_tensors='pt')
1140
+
1141
+ @torch.no_grad()
1142
+ def chat(
1143
+ self,
1144
+ tokenizer,
1145
+ query: str,
1146
+ history: List[Tuple[str, str]] = [],
1147
+ streamer: Optional[BaseStreamer] = None,
1148
+ max_new_tokens: int = 1024,
1149
+ do_sample: bool = True,
1150
+ temperature: float = 0.8,
1151
+ top_p: float = 0.8,
1152
+ meta_instruction: str = '',
1153
+ **kwargs,
1154
+ ):
1155
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1156
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1157
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1158
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|end▁of▁sentence|>'])[0]]
1159
+ outputs = self.generate(
1160
+ **inputs,
1161
+ streamer=streamer,
1162
+ max_new_tokens=max_new_tokens,
1163
+ do_sample=do_sample,
1164
+ temperature=temperature,
1165
+ top_p=top_p,
1166
+ eos_token_id=eos_token_id,
1167
+ **kwargs,
1168
+ )
1169
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
1170
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1171
+ response = response.split('<|end▁of▁sentence|>')[0]
1172
+ history = history + [(query, response)]
1173
+ return response, history
1174
+
1175
+ @torch.no_grad()
1176
+ def stream_chat(
1177
+ self,
1178
+ tokenizer,
1179
+ query: str,
1180
+ history: List[Tuple[str, str]] = [],
1181
+ max_new_tokens: int = 1024,
1182
+ do_sample: bool = True,
1183
+ temperature: float = 0.8,
1184
+ top_p: float = 0.8,
1185
+ **kwargs,
1186
+ ):
1187
+ """
1188
+ Return a generator in format: (response, history)
1189
+ Eg.
1190
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1191
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1192
+ """
1193
+ if BaseStreamer is None:
1194
+ raise ModuleNotFoundError(
1195
+ 'The version of `transformers` is too low. Please make sure '
1196
+ 'that you have installed `transformers>=4.28.0`.'
1197
+ )
1198
+
1199
+ response_queue = queue.Queue(maxsize=20)
1200
+
1201
+ class ChatStreamer(BaseStreamer):
1202
+ def __init__(self, tokenizer) -> None:
1203
+ super().__init__()
1204
+ self.tokenizer = tokenizer
1205
+ self.queue = response_queue
1206
+ self.query = query
1207
+ self.history = history
1208
+ self.response = ''
1209
+ self.cache = []
1210
+ self.received_inputs = False
1211
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1212
+
1213
+ def put(self, value):
1214
+ if len(value.shape) > 1 and value.shape[0] > 1:
1215
+ raise ValueError('ChatStreamer only supports batch size 1')
1216
+ elif len(value.shape) > 1:
1217
+ value = value[0]
1218
+
1219
+ if not self.received_inputs:
1220
+ # The first received value is input_ids, ignore here
1221
+ self.received_inputs = True
1222
+ return
1223
+
1224
+ self.cache.extend(value.tolist())
1225
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1226
+ if token.strip() != '<|end▁of▁sentence|>':
1227
+ self.response = self.response + token
1228
+ history = self.history + [(self.query, self.response)]
1229
+ self.queue.put((self.response, history))
1230
+ self.cache = []
1231
+ else:
1232
+ self.end()
1233
+
1234
+ def end(self):
1235
+ self.queue.put(None)
1236
+
1237
+ def stream_producer():
1238
+ return self.chat(
1239
+ tokenizer=tokenizer,
1240
+ query=query,
1241
+ streamer=ChatStreamer(tokenizer=tokenizer),
1242
+ history=history,
1243
+ max_new_tokens=max_new_tokens,
1244
+ do_sample=do_sample,
1245
+ temperature=temperature,
1246
+ top_p=top_p,
1247
+ **kwargs,
1248
+ )
1249
+
1250
+ def consumer():
1251
+ producer = threading.Thread(target=stream_producer)
1252
+ producer.start()
1253
+ while True:
1254
+ res = response_queue.get()
1255
+ if res is None:
1256
+ return
1257
+ yield res
1258
+
1259
+ return consumer()
1260
+
1261
+
1262
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->SkyworkLM2
1263
+ @add_start_docstrings(
1264
+ """
1265
+ The SkyworkLM2 Model transformer with a sequence classification head on top (linear layer).
1266
+ [`SkyworkLM2ForSequenceClassification`] uses the last token in order to do the classification,
1267
+ as other causal models (e.g. GPT-2) do.
1268
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1269
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1270
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1271
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1272
+ each row of the batch).
1273
+ """,
1274
+ SkyworkLM2_START_DOCSTRING,
1275
+ )
1276
+ class SkyworkLM2ForSequenceClassification(SkyworkLM2PreTrainedModel):
1277
+ def __init__(self, config):
1278
+ super().__init__(config)
1279
+ self.num_labels = config.num_labels
1280
+ self.model = SkyworkLM2Model(config)
1281
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1282
+
1283
+ # Initialize weights and apply final processing
1284
+ self.post_init()
1285
+
1286
+ def get_input_embeddings(self):
1287
+ return self.model.tok_embeddings
1288
+
1289
+ def set_input_embeddings(self, value):
1290
+ self.model.tok_embeddings = value
1291
+
1292
+ @add_start_docstrings_to_model_forward(SkyworkLM2_INPUTS_DOCSTRING)
1293
+ def forward(
1294
+ self,
1295
+ input_ids: torch.LongTensor = None,
1296
+ attention_mask: Optional[torch.Tensor] = None,
1297
+ position_ids: Optional[torch.LongTensor] = None,
1298
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1299
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1300
+ labels: Optional[torch.LongTensor] = None,
1301
+ use_cache: Optional[bool] = None,
1302
+ output_attentions: Optional[bool] = None,
1303
+ output_hidden_states: Optional[bool] = None,
1304
+ return_dict: Optional[bool] = None,
1305
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1306
+ r"""
1307
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1308
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1309
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1310
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1311
+ """
1312
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1313
+
1314
+ transformer_outputs = self.model(
1315
+ input_ids,
1316
+ attention_mask=attention_mask,
1317
+ position_ids=position_ids,
1318
+ past_key_values=past_key_values,
1319
+ inputs_embeds=inputs_embeds,
1320
+ use_cache=use_cache,
1321
+ output_attentions=output_attentions,
1322
+ output_hidden_states=output_hidden_states,
1323
+ return_dict=return_dict,
1324
+ )
1325
+ hidden_states = transformer_outputs[0]
1326
+ logits = self.score(hidden_states)
1327
+
1328
+ if input_ids is not None:
1329
+ batch_size = input_ids.shape[0]
1330
+ else:
1331
+ batch_size = inputs_embeds.shape[0]
1332
+
1333
+ if self.config.pad_token_id is None and batch_size != 1:
1334
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1335
+ if self.config.pad_token_id is None:
1336
+ sequence_lengths = -1
1337
+ else:
1338
+ if input_ids is not None:
1339
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1340
+ logits.device
1341
+ )
1342
+ else:
1343
+ sequence_lengths = -1
1344
+
1345
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1346
+
1347
+ loss = None
1348
+ if labels is not None:
1349
+ labels = labels.to(logits.device)
1350
+ if self.config.problem_type is None:
1351
+ if self.num_labels == 1:
1352
+ self.config.problem_type = 'regression'
1353
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1354
+ self.config.problem_type = 'single_label_classification'
1355
+ else:
1356
+ self.config.problem_type = 'multi_label_classification'
1357
+
1358
+ if self.config.problem_type == 'regression':
1359
+ loss_fct = MSELoss()
1360
+ if self.num_labels == 1:
1361
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1362
+ else:
1363
+ loss = loss_fct(pooled_logits, labels)
1364
+ elif self.config.problem_type == 'single_label_classification':
1365
+ loss_fct = CrossEntropyLoss()
1366
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1367
+ elif self.config.problem_type == 'multi_label_classification':
1368
+ loss_fct = BCEWithLogitsLoss()
1369
+ loss = loss_fct(pooled_logits, labels)
1370
+ if not return_dict:
1371
+ output = (pooled_logits,) + transformer_outputs[1:]
1372
+ return ((loss,) + output) if loss is not None else output
1373
+
1374
+ return SequenceClassifierOutputWithPast(
1375
+ loss=loss,
1376
+ logits=pooled_logits,
1377
+ past_key_values=transformer_outputs.past_key_values,
1378
+ hidden_states=transformer_outputs.hidden_states,
1379
+ attentions=transformer_outputs.attentions,
1380
+ )
modeling_skywork_vit.py ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, Union
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+ import torch.utils.checkpoint
6
+ from einops import rearrange
7
+ from timm.models.layers import DropPath
8
+ from torch import nn
9
+ from transformers.activations import ACT2FN
10
+ from transformers.modeling_outputs import (BaseModelOutput,
11
+ BaseModelOutputWithPooling)
12
+ from transformers.modeling_utils import PreTrainedModel
13
+ from transformers.utils import logging
14
+
15
+ from .configuration_skywork_vit import SkyworkVisionConfig
16
+
17
+ try:
18
+ from flash_attn.bert_padding import pad_input, unpad_input
19
+ from flash_attn.flash_attn_interface import \
20
+ flash_attn_varlen_qkvpacked_func
21
+ has_flash_attn = True
22
+ except:
23
+ print('FlashAttention2 is not installed.')
24
+ has_flash_attn = False
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ class FlashAttention(nn.Module):
30
+ """Implement the scaled dot product attention with softmax.
31
+ Arguments
32
+ ---------
33
+ softmax_scale: The temperature to use for the softmax attention.
34
+ (default: 1/sqrt(d_keys) where d_keys is computed at
35
+ runtime)
36
+ attention_dropout: The dropout rate to apply to the attention
37
+ (default: 0.0)
38
+ """
39
+
40
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
41
+ super().__init__()
42
+ self.softmax_scale = softmax_scale
43
+ self.dropout_p = attention_dropout
44
+
45
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
46
+ max_s=None, need_weights=False):
47
+ """Implements the multihead softmax attention.
48
+ Arguments
49
+ ---------
50
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
51
+ if unpadded: (nnz, 3, h, d)
52
+ key_padding_mask: a bool tensor of shape (B, S)
53
+ """
54
+ assert not need_weights
55
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
56
+ assert qkv.is_cuda
57
+
58
+ if cu_seqlens is None:
59
+ batch_size = qkv.shape[0]
60
+ seqlen = qkv.shape[1]
61
+ if key_padding_mask is None:
62
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
63
+ max_s = seqlen
64
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
65
+ device=qkv.device)
66
+ output = flash_attn_varlen_qkvpacked_func(
67
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
68
+ softmax_scale=self.softmax_scale, causal=causal
69
+ )
70
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
71
+ else:
72
+ nheads = qkv.shape[-2]
73
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
74
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
75
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
76
+ output_unpad = flash_attn_varlen_qkvpacked_func(
77
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
78
+ softmax_scale=self.softmax_scale, causal=causal
79
+ )
80
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
81
+ indices, batch_size, seqlen),
82
+ 'b s (h d) -> b s h d', h=nheads)
83
+ else:
84
+ assert max_s is not None
85
+ output = flash_attn_varlen_qkvpacked_func(
86
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
87
+ softmax_scale=self.softmax_scale, causal=causal
88
+ )
89
+
90
+ return output, None
91
+
92
+
93
+ class SkyworkRMSNorm(nn.Module):
94
+ def __init__(self, hidden_size, eps=1e-6):
95
+ super().__init__()
96
+ self.weight = nn.Parameter(torch.ones(hidden_size))
97
+ self.variance_epsilon = eps
98
+
99
+ def forward(self, hidden_states):
100
+ input_dtype = hidden_states.dtype
101
+ hidden_states = hidden_states.to(torch.float32)
102
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
103
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
104
+ return self.weight * hidden_states.to(input_dtype)
105
+
106
+
107
+ try:
108
+ from apex.normalization import FusedRMSNorm
109
+
110
+ SkyworkRMSNorm = FusedRMSNorm # noqa
111
+
112
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead ofSkyworkRMSNorm')
113
+ except ImportError:
114
+ # using the normal SkyworkRMSNorm
115
+ pass
116
+ except Exception:
117
+ logger.warning('discovered apex but it failed to load, falling back to SkyworkRMSNorm')
118
+ pass
119
+
120
+
121
+ NORM2FN = {
122
+ 'rms_norm': SkyworkRMSNorm,
123
+ 'layer_norm': nn.LayerNorm,
124
+ }
125
+
126
+
127
+ class SkyworkVisionEmbeddings(nn.Module):
128
+ def __init__(self, config: SkyworkVisionConfig):
129
+ super().__init__()
130
+ self.config = config
131
+ self.embed_dim = config.hidden_size
132
+ self.image_size = config.image_size
133
+ self.patch_size = config.patch_size
134
+
135
+ self.class_embedding = nn.Parameter(
136
+ torch.randn(1, 1, self.embed_dim),
137
+ )
138
+
139
+ self.patch_embedding = nn.Conv2d(
140
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
141
+ )
142
+
143
+ self.num_patches = (self.image_size // self.patch_size) ** 2
144
+ self.num_positions = self.num_patches + 1
145
+
146
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
147
+
148
+ def _get_pos_embed(self, pos_embed, H, W):
149
+ target_dtype = pos_embed.dtype
150
+ pos_embed = pos_embed.float().reshape(
151
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
152
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
153
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
154
+ return pos_embed
155
+
156
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
157
+ target_dtype = self.patch_embedding.weight.dtype
158
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
159
+ batch_size, _, height, width = patch_embeds.shape
160
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
161
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
162
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
163
+ position_embedding = torch.cat([
164
+ self.position_embedding[:, :1, :],
165
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
166
+ ], dim=1)
167
+ embeddings = embeddings + position_embedding.to(target_dtype)
168
+ return embeddings
169
+
170
+
171
+ class SkyworkAttention(nn.Module):
172
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
173
+
174
+ def __init__(self, config: SkyworkVisionConfig):
175
+ super().__init__()
176
+ self.config = config
177
+ self.embed_dim = config.hidden_size
178
+ self.num_heads = config.num_attention_heads
179
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
180
+ if config.use_flash_attn and not has_flash_attn:
181
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
182
+ self.head_dim = self.embed_dim // self.num_heads
183
+ if self.head_dim * self.num_heads != self.embed_dim:
184
+ raise ValueError(
185
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
186
+ f' {self.num_heads}).'
187
+ )
188
+
189
+ self.scale = self.head_dim ** -0.5
190
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
191
+ self.attn_drop = nn.Dropout(config.attention_dropout)
192
+ self.proj_drop = nn.Dropout(config.dropout)
193
+
194
+ self.qk_normalization = config.qk_normalization
195
+
196
+ if self.qk_normalization:
197
+ self.q_norm = SkyworkRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
198
+ self.k_norm = SkyworkRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
199
+
200
+ if self.use_flash_attn:
201
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
202
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
203
+
204
+ def _naive_attn(self, x):
205
+ B, N, C = x.shape
206
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
207
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
208
+
209
+ if self.qk_normalization:
210
+ B_, H_, N_, D_ = q.shape
211
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
212
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
213
+
214
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
215
+ attn = attn.softmax(dim=-1)
216
+ attn = self.attn_drop(attn)
217
+
218
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
219
+ x = self.proj(x)
220
+ x = self.proj_drop(x)
221
+ return x
222
+
223
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
224
+ qkv = self.qkv(x)
225
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
226
+
227
+ if self.qk_normalization:
228
+ q, k, v = qkv.unbind(2)
229
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
230
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
231
+ qkv = torch.stack([q, k, v], dim=2)
232
+
233
+ context, _ = self.inner_attn(
234
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
235
+ )
236
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
237
+ outs = self.proj_drop(outs)
238
+ return outs
239
+
240
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
241
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
242
+ return x
243
+
244
+
245
+ class SkyworkMLP(nn.Module):
246
+ def __init__(self, config: SkyworkVisionConfig):
247
+ super().__init__()
248
+ self.config = config
249
+ self.act = ACT2FN[config.hidden_act]
250
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
251
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
252
+
253
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
254
+ hidden_states = self.fc1(hidden_states)
255
+ hidden_states = self.act(hidden_states)
256
+ hidden_states = self.fc2(hidden_states)
257
+ return hidden_states
258
+
259
+
260
+ class SkyworkVisionEncoderLayer(nn.Module):
261
+ def __init__(self, config: SkyworkVisionConfig, drop_path_rate: float):
262
+ super().__init__()
263
+ self.embed_dim = config.hidden_size
264
+ self.intermediate_size = config.intermediate_size
265
+ self.norm_type = config.norm_type
266
+
267
+ self.attn = SkyworkAttention(config)
268
+ self.mlp = SkyworkMLP(config)
269
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
270
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
271
+
272
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
273
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
274
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
275
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
276
+
277
+ def forward(
278
+ self,
279
+ hidden_states: torch.Tensor,
280
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
281
+ """
282
+ Args:
283
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
284
+ """
285
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
286
+
287
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
288
+
289
+ return hidden_states
290
+
291
+
292
+ class SkyworkVisionEncoder(nn.Module):
293
+ """
294
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
295
+ [`SkyworkEncoderLayer`].
296
+ Args:
297
+ config (`SkyworkConfig`):
298
+ The corresponding vision configuration for the `SkyworkEncoder`.
299
+ """
300
+
301
+ def __init__(self, config: SkyworkVisionConfig):
302
+ super().__init__()
303
+ self.config = config
304
+ # stochastic depth decay rule
305
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
306
+ self.layers = nn.ModuleList([
307
+ SkyworkVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
308
+ self.gradient_checkpointing = True
309
+
310
+ def forward(
311
+ self,
312
+ inputs_embeds,
313
+ output_hidden_states: Optional[bool] = None,
314
+ return_dict: Optional[bool] = None,
315
+ ) -> Union[Tuple, BaseModelOutput]:
316
+ r"""
317
+ Args:
318
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
319
+ Embedded representation of the inputs. Should be float, not int tokens.
320
+ output_hidden_states (`bool`, *optional*):
321
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
322
+ for more detail.
323
+ return_dict (`bool`, *optional*):
324
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
325
+ """
326
+ output_hidden_states = (
327
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
328
+ )
329
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
330
+
331
+ encoder_states = () if output_hidden_states else None
332
+ hidden_states = inputs_embeds
333
+
334
+ for idx, encoder_layer in enumerate(self.layers):
335
+ if output_hidden_states:
336
+ encoder_states = encoder_states + (hidden_states,)
337
+ if self.gradient_checkpointing and self.training:
338
+ layer_outputs = torch.utils.checkpoint.checkpoint(
339
+ encoder_layer,
340
+ hidden_states)
341
+ else:
342
+ layer_outputs = encoder_layer(
343
+ hidden_states,
344
+ )
345
+ hidden_states = layer_outputs
346
+
347
+ if output_hidden_states:
348
+ encoder_states = encoder_states + (hidden_states,)
349
+
350
+ if not return_dict:
351
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
352
+ return BaseModelOutput(
353
+ last_hidden_state=hidden_states, hidden_states=encoder_states
354
+ )
355
+
356
+
357
+ class SkyworkVisionModel(PreTrainedModel):
358
+ main_input_name = 'pixel_values'
359
+ _supports_flash_attn_2 = True
360
+ config_class = SkyworkVisionConfig
361
+ _no_split_modules = ['SkyworkVisionEncoderLayer']
362
+
363
+ def __init__(self, config: SkyworkVisionConfig):
364
+ super().__init__(config)
365
+ self.config = config
366
+
367
+ self.embeddings = SkyworkVisionEmbeddings(config)
368
+ self.encoder = SkyworkVisionEncoder(config)
369
+
370
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
371
+ pos_emb = self.embeddings.position_embedding
372
+ _, num_positions, embed_dim = pos_emb.shape
373
+ cls_emb = pos_emb[:, :1, :]
374
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
375
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
376
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
377
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
378
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
379
+ self.embeddings.image_size = new_size
380
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
381
+
382
+ def get_input_embeddings(self):
383
+ return self.embeddings
384
+
385
+ def forward(
386
+ self,
387
+ pixel_values: Optional[torch.FloatTensor] = None,
388
+ output_hidden_states: Optional[bool] = None,
389
+ return_dict: Optional[bool] = None,
390
+ pixel_embeds: Optional[torch.FloatTensor] = None,
391
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
392
+ output_hidden_states = (
393
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
394
+ )
395
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
396
+
397
+ if pixel_values is None and pixel_embeds is None:
398
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
399
+
400
+ if pixel_embeds is not None:
401
+ hidden_states = pixel_embeds
402
+ else:
403
+ if len(pixel_values.shape) == 4:
404
+ hidden_states = self.embeddings(pixel_values)
405
+ else:
406
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
407
+ encoder_outputs = self.encoder(
408
+ inputs_embeds=hidden_states,
409
+ output_hidden_states=output_hidden_states,
410
+ return_dict=return_dict,
411
+ )
412
+ last_hidden_state = encoder_outputs.last_hidden_state
413
+ pooled_output = last_hidden_state[:, 0, :]
414
+
415
+ if not return_dict:
416
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
417
+
418
+ return BaseModelOutputWithPooling(
419
+ last_hidden_state=last_hidden_state,
420
+ pooler_output=pooled_output,
421
+ hidden_states=encoder_outputs.hidden_states,
422
+ attentions=encoder_outputs.attentions,
423
+ )
outputs_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6275f19dc49e47fbcdae9d1fff11055e2e9d22cf4f9d7689b5ab9ba1e4f9b682
3
+ size 53953211
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 448,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.485,
9
+ 0.456,
10
+ 0.406
11
+ ],
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 3,
18
+ "size": 448
19
+ }
pytorch_model-00001-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21dfaef5eb074fa6be9215a6c47e18dfee343aff2e678d2ea6c34056c1db1572
3
+ size 1977080752
pytorch_model-00002-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2387af14e1aec87792d75fcfc1d3ac033a5244328a9f900ead9d508d155d0f3
3
+ size 1966729982
pytorch_model-00003-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1898811364ceb572bf34e2b5aca1aa2baacd94187ce94a707c41c0258ec28a13
3
+ size 1966729982
pytorch_model-00004-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:700977a4af96d24c4c391e298410bc2d5e883b57157a95d9bfaae161da4d7d22
3
+ size 1966729982
pytorch_model-00005-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c639f8332d1d6c24d64804499147cdd1209d66340476d9598aa20c21a290737
3
+ size 1966729982
pytorch_model-00006-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbd392324703f80a7a79adc804f0137221d5495ef5712c4a23c34f447a455e42
3
+ size 1229192920
pytorch_model-00007-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bbcead1dabf6bb4e28269c7b7349c1b1b10cec99b681659a0d1b1eb633e2ecd
3
+ size 1986298634
pytorch_model-00008-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f49919b9a183a630866ea5e6f67d4fbc54a1cd63126cbf4cd42c5ef2096658bc
3
+ size 1953344189
pytorch_model-00009-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7c867127f68cf173e4fe938c5526b7628916f56422780cd3b55c55c75b06392
3
+ size 1953344381
pytorch_model-00010-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a0137b4505f8c3c6e378846545fb80c72dae5a8d244b8ad8e9796ceadcd379c
3
+ size 1994193964
pytorch_model-00011-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:577ecd50ef0200ae04a9f307ce4ade06d89da0005040fd609e2d4be69674e602
3
+ size 1953312580
pytorch_model-00012-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:265776e1f0a2ba9ac5222490a61d00d8ffc4ad2b9e64c1e860d0a3c8c481eb9f
3
+ size 1953344381
pytorch_model-00013-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05bb58b23c1878c17d6e900c51c25cc2cdd82b94671d5a856cade20d51277db7
3
+ size 1953344381
pytorch_model-00014-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:016a3847672fb063e63e6f257a2544b8f15516f9389191cc02e6162d235cef51
3
+ size 1994193964
pytorch_model-00015-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18ded2be002dfb33112476e9f54df3abaf9673d38fe95a193c0a16e90552c0b1
3
+ size 1953312580
pytorch_model-00016-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8738619e2cf694e3b9496b0eef1d7ce7fa0aed5e92babe176f674ef007fd201
3
+ size 1810293716
pytorch_model.bin.index.json ADDED
The diff for this file is too large to render. See raw diff
 
skywork-logo.png ADDED

Git LFS Details

  • SHA256: bbd30750ec11120286b588940e8f33d045f56f00c97447880e88423518617fcc
  • Pointer size: 131 Bytes
  • Size of remote file: 119 kB
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f9ba4b4a6625b5047a1356f6081b641c3e4e6a4a198facbd4bef217747d1685
3
+ size 11423548
tokenizer_config.json ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|im_start|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "151645": {
23
+ "content": "<|im_end|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "151646": {
31
+ "content": "<|object_ref_start|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|object_ref_end|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "151648": {
47
+ "content": "<|box_start|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "151649": {
55
+ "content": "<|box_end|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "151665": {
183
+ "content": "<img>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "151666": {
191
+ "content": "</img>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": true
197
+ },
198
+ "151667": {
199
+ "content": "<IMG_CONTEXT>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": true
205
+ },
206
+ "151668": {
207
+ "content": "<quad>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": true
213
+ },
214
+ "151669": {
215
+ "content": "</quad>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "151670": {
223
+ "content": "<ref>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "151671": {
231
+ "content": "</ref>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "151672": {
239
+ "content": "<box>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "151673": {
247
+ "content": "</box>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": true
253
+ }
254
+ },
255
+ "additional_special_tokens": [
256
+ "<|im_start|>",
257
+ "<|im_end|>",
258
+ "<|object_ref_start|>",
259
+ "<|object_ref_end|>",
260
+ "<|box_start|>",
261
+ "<|box_end|>",
262
+ "<|quad_start|>",
263
+ "<|quad_end|>",
264
+ "<|vision_start|>",
265
+ "<|vision_end|>",
266
+ "<|vision_pad|>",
267
+ "<|image_pad|>",
268
+ "<|video_pad|>"
269
+ ],
270
+ "bos_token": null,
271
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'FIRST, think through the problem step-by-step. Explain each step clearly, including any relevant concepts or formulas. Reflect on why each step is necessary and check for potential errors. Consider alternative approaches and justify the chosen method. Enclose this entire reasoning process within <think></think> tags. THEN, provide the final answer enclosed in \\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n",
272
+ "clean_up_tokenization_spaces": false,
273
+ "eos_token": "<|im_end|>",
274
+ "errors": "replace",
275
+ "extra_special_tokens": {},
276
+ "model_max_length": 16384,
277
+ "pad_token": "<|endoftext|>",
278
+ "split_special_tokens": false,
279
+ "tokenizer_class": "Qwen2Tokenizer",
280
+ "unk_token": null
281
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff