Upload README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Usage:
|
| 2 |
+
|
| 3 |
+
```python
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
+
|
| 7 |
+
question_template = "<|im_start|>user\nMy LEAN 4 state is:\n```{state}```\nPlease write down the reasoning that leads to the possible next tactic and then predict the tactic to help me prove the theorem.<|im_end|>\n<|im_start|>assistant\n"
|
| 8 |
+
|
| 9 |
+
model_name = "ScalableMath/Lean-STaR-plus"
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
| 11 |
+
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 13 |
+
|
| 14 |
+
state = "x : \u211d\nn : \u2115\nh\u2080 : -1 < x\nh\u2081 : 0 < n\n\u22a2 1 + \u2191n * x \u2264 (1 + x) ^ n"
|
| 15 |
+
question = question_template.format(state=state)
|
| 16 |
+
|
| 17 |
+
input_tensor = torch.tensor([tokenizer.encode(question)])
|
| 18 |
+
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=500)
|
| 19 |
+
|
| 20 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 21 |
+
print(result)
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
Example Results:
|
| 25 |
+
```
|
| 26 |
+
# State
|
| 27 |
+
|
| 28 |
+
x : ℝ
|
| 29 |
+
n : ℕ
|
| 30 |
+
h₀ : -1 < x
|
| 31 |
+
h₁ : 0 < n
|
| 32 |
+
⊢ 1 + ↑n * x ≤ (1 + x) ^ n
|
| 33 |
+
|
| 34 |
+
# Reasoning
|
| 35 |
+
|
| 36 |
+
To prove the inequality involving the binomial expansion of `(1 + x)^n`, we start by considering the binomial expansion of `1 + x` raised to the power `n`. This expansion will allow us to compare the left-hand side and the right-hand side of the inequality.
|
| 37 |
+
|
| 38 |
+
# Next Tactic
|
| 39 |
+
|
| 40 |
+
have h₂ : x = -1 + (x + 1) := by simp
|
| 41 |
+
```
|