File size: 10,633 Bytes
07d61c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# coding=utf-8
# Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple

def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0) -> torch.Tensor:
    """Precompute the frequency tensor for complex rotation."""
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    t = torch.arange(end, device=freqs.device)
    freqs = torch.outer(t, freqs)
    return torch.polar(torch.ones_like(freqs), freqs)

def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
    """Apply rotary position embeddings to the input tensor."""
    x_complex = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
    freqs_cis = freqs_cis.view(1, *freqs_cis.shape)
    x_rotated = x_complex * freqs_cis
    return torch.view_as_real(x_rotated).flatten(-2)

class SapnousAttention(nn.Module):
    """Multi-head attention with rotary position embeddings and sliding window attention."""
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.num_attention_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_attention_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta
        self.sliding_window = config.sliding_window if config.use_sliding_window else None

        if (self.head_dim * self.num_attention_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_attention_heads (got {self.hidden_size} and {self.num_attention_heads})"
            )

        self.q_proj = nn.Linear(self.hidden_size, self.num_attention_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_attention_heads * self.head_dim, self.hidden_size, bias=False)

        self.attention_dropout = nn.Dropout(config.attention_dropout)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int) -> torch.Tensor:
        return tensor.view(bsz, seq_len, self.num_attention_heads, self.head_dim).transpose(1, 2)

    def _kv_shape(self, tensor: torch.Tensor, seq_len: int, bsz: int) -> torch.Tensor:
        return tensor.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

    def forward(

        self,

        hidden_states: torch.Tensor,

        freqs_cis: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_value: Optional[Tuple[torch.Tensor]] = None,

        output_attentions: bool = False,

        use_cache: bool = False,

    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = self._shape(query_states, q_len, bsz)
        key_states = self._kv_shape(key_states, q_len, bsz)
        value_states = self._kv_shape(value_states, q_len, bsz)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]

        # Apply rotary position embeddings
        if position_ids is None:
            position_ids = torch.arange(kv_seq_len, device=hidden_states.device)
        cos, sin = freqs_cis[position_ids]
        query_states, key_states = apply_rotary_emb(query_states, cos), apply_rotary_emb(key_states, sin)

        if past_key_value is not None:
            # Reuse k, v, self_attention
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

        past_key_value = (key_states, value_states) if use_cache else None

        # Repeat k/v heads if n_kv_heads < n_heads
        key_states = torch.repeat_interleave(key_states, self.num_key_value_groups, dim=1)
        value_states = torch.repeat_interleave(value_states, self.num_key_value_groups, dim=1)

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attention_mask is not None:
            attn_weights = attn_weights + attention_mask

        # Sliding window attention if configured
        if self.sliding_window is not None and kv_seq_len > self.sliding_window:
            # Create sliding window mask
            window_mask = torch.ones_like(attn_weights, dtype=torch.bool)
            for i in range(q_len):
                window_start = max(0, i - self.sliding_window // 2)
                window_end = min(kv_seq_len, i + self.sliding_window // 2)
                window_mask[:, :, i, window_start:window_end] = False
            attn_weights = attn_weights.masked_fill(window_mask, float('-inf'))

        # Causal mask for autoregressive generation
        if self.config.scoring_func == "softmax":
            causal_mask = torch.triu(torch.ones((q_len, kv_seq_len), dtype=torch.bool), diagonal=1)
            causal_mask = causal_mask.unsqueeze(0).unsqueeze(0)
            attn_weights = attn_weights.masked_fill(causal_mask.to(attn_weights.device), float('-inf'))
            attn_weights = F.softmax(attn_weights, dim=-1)
        else:
            # Alternative scoring functions (e.g., RoPE-only, cosine similarity)
            attn_weights = F.relu(attn_weights)
            attn_weights = attn_weights / (attn_weights.sum(dim=-1, keepdim=True) + 1e-6)

        attn_weights = self.attention_dropout(attn_weights)
        attn_output = torch.matmul(attn_weights, value_states)

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value

class SapnousBlock(nn.Module):
    """Transformer block with attention, layer norm, and feed-forward network."""
    def __init__(self, config):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = SapnousAttention(config)
        self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps)
        
        self.mlp = nn.Sequential(
            nn.Linear(config.hidden_size, config.intermediate_size, bias=False),
            nn.SiLU(),
            nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
        )

    def forward(

        self,

        hidden_states: torch.Tensor,

        freqs_cis: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_value: Optional[Tuple[torch.Tensor]] = None,

        output_attentions: bool = False,

        use_cache: bool = False,

    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        # Self Attention
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            freqs_cis=freqs_cis,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs

class SapnousVisionEmbeddings(nn.Module):
    """Vision embeddings for multimodal support."""
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        
        # Vision embedding layers
        self.patch_embed = nn.Conv2d(3, self.hidden_size, kernel_size=16, stride=16)
        self.cls_token = nn.Parameter(torch.zeros(1, 1, self.hidden_size))
        self.pos_embed = nn.Parameter(torch.zeros(1, (224 // 16) ** 2 + 1, self.hidden_size))
        
        # Layer normalization and dropout
        self.norm = nn.LayerNorm(self.hidden_size, eps=config.rms_norm_eps)
        self.dropout = nn.Dropout(config.attention_dropout)

    def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
        B = pixel_values.shape[0]
        
        # Create patch embeddings
        x = self.patch_embed(pixel_values)
        x = x.flatten(2).transpose(1, 2)  # B, N, C
        
        # Add cls token and position embeddings
        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        x = x + self.pos_embed
        
        # Apply normalization and dropout
        x = self.norm(x)
        x = self.dropout(x)
        
        return x