File size: 2,246 Bytes
c484502
 
809af7d
 
 
 
 
 
 
 
 
 
 
 
c484502
809af7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---

license: apache-2.0
datasets:
- dair-ai/emotion
language:
- en
metrics:
- accuracy
- f1
- precision
- recall
base_model:
- albert/albert-large-v2
pipeline_tag: text-classification
---

# Sentiment classification using Albert-large-v2

### Model Description

This model is a fine-tuned version of the ALBERT-Large model designed for **emotion sentiment classification**. This model is capable of detecting six different emotional categories in text: **Anger**, **Disgust**, **Fear**, **Happiness**, **Sadness**, and **Surprise**. It achieves high performance on sentiment classification tasks, making it suitable for a variety of real-world applications such as emotion detection, content moderation, and sentiment analysis.

## How to Get Started

Use the code below to get started with the model.

```python
from transformers import pipeline

emotion_classifier = pipeline("text-classification", model="SandeepVvigneshwar/sentiment-classification-albert-large-v2")

text = "I am so happy to be part of this project!"
emotion = emotion_classifier(text)
print(emotion)
```


## Requirements

- Python 3.x
- Hugging Face `transformers` library
- PyTorch or TensorFlow


### Training Data

[dair-ai/emotion](https://huggingface.co/datasets/dair-ai/emotion)

#### Training Hyperparameters

- learning_rate = 2e-5
- per_device_train_batch_size = 8
- per_device_eval_batch_size = 8
- gradient_accumulation_steps = 2
- num_train_epochs = 8
- weight_decay = 0.01
- fp16 = True
- metric_for_best_model = "f1"
- dataloader_num_workers = 4
- max_grad_norm = 1.0
- lr_scheduler_type = "linear"

### Limits

- Domain-specific Text: The model may not perform well on specialized or highly technical texts.
- Languages: The model has been fine-tuned on English-language data and may not generalize well to other languages.
- Input Length: The model performs best with shorter text inputs. For longer, more complex texts, performance may vary.

## Evaluation

| Metric                     | Value  |
|----------------------------|--------|
| **Evaluation Loss**        | 0.08795 |
| **Evaluation Accuracy**    | 94.31%  |
| **Evaluation F1-Score**    | 94.39%  |
| **Evaluation Precision**   | 94.99%  |
| **Evaluation Recall**      | 94.31%  |