--- frameworks: - Pytorch tasks: - text-to-image-synthesis #model-type: ##如 gpt、phi、llama、chatglm、baichuan 等 #- gpt #domain: ##如 nlp、cv、audio、multi-modal #- nlp #language: ##语言代码列表 https://help.aliyun.com/document_detail/215387.html?spm=a2c4g.11186623.0.0.9f8d7467kni6Aa #- cn #metrics: ##如 CIDEr、Blue、ROUGE 等 #- CIDEr #tags: ##各种自定义,包括 pretrained、fine-tuned、instruction-tuned、RL-tuned 等训练方法和其他 #- pretrained #tools: ##如 vllm、fastchat、llamacpp、AdaSeq 等 #- vllm base_model: - Qwen/Qwen-Image base_model_relation: adapter --- # Qwen-Image Image Structure Control Model ![](./assets/cover.png) ## Model Introduction This model is a local image redraw model trained based on [Qwen-Image](https://www.modelscope.cn/models/Qwen/Qwen-Image) , with a model structure of ControlNet, capable of redrawing local areas of an image. The training framework is built on [DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio) , and the dataset used is [Qwen-Image-Self-Generated-Dataset](https://www.modelscope.cn/datasets/DiffSynth-Studio/Qwen-Image-Self-Generated-Dataset)。 This model is compatible with both [Qwen-Image](https://www.modelscope.cn/models/Qwen/Qwen-Image) and [Qwen-Image-Edit](https://www.modelscope.cn/models/Qwen/Qwen-Image-Edit),It can perform local redrawing on Qwen-Image and edit specified areas on Qwen-Image-Edit. ## Effect Demonstration |Input Prompt|Input Image|Redrawn Image| |-|-|-| |A robot with wings and a hat standing in a colorful garden with flowers and butterflies.|![](./assets/image_1_1.jpg)|![](./assets/image_1_2.jpg)| |A girl in a school uniform stands gracefully in front of a vibrant stained glass window with colorful geometric patterns.|![](./assets/image_2_1.jpg)|![](./assets/image_2_2.jpg)| |A small wooden boat battles against towering, crashing waves in a stormy sea.|![](./assets/image_3_1.png)|![](./assets/image_3_2.png)| ## Limitations - Inpaint models based on the ControlNet structure may result in disharmonious boundaries between the redrawn and non-redrawn areas. - The model is trained on rectangular area redraw data, so its generalization to non-rectangular areas might not be optimal. ## Inference Code ``` git clone https://github.com/modelscope/DiffSynth-Studio.git cd DiffSynth-Studio pip install -e . ``` Qwen-Image: ```python import torch from PIL import Image from modelscope import dataset_snapshot_download from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig, ControlNetInput pipe = QwenImagePipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"), ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"), ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"), ModelConfig(model_id="DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Inpaint", origin_file_pattern="model.safetensors"), ], tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"), ) dataset_snapshot_download( dataset_id="DiffSynth-Studio/example_image_dataset", local_dir="./data/example_image_dataset", allow_file_pattern="inpaint/*.jpg" ) prompt = "a cat with sunglasses" controlnet_image = Image.open("./data/example_image_dataset/inpaint/image_1.jpg").convert("RGB").resize((1328, 1328)) inpaint_mask = Image.open("./data/example_image_dataset/inpaint/mask.jpg").convert("RGB").resize((1328, 1328)) image = pipe( prompt, seed=0, input_image=controlnet_image, inpaint_mask=inpaint_mask, blockwise_controlnet_inputs=[ControlNetInput(image=controlnet_image, inpaint_mask=inpaint_mask)], num_inference_steps=40, ) image.save("image.jpg") ``` Qwen-Image-Edit: ```python import torch from PIL import Image from modelscope import dataset_snapshot_download from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig, ControlNetInput pipe = QwenImagePipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="Qwen/Qwen-Image-Edit", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"), ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"), ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"), ModelConfig(model_id="DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Inpaint", origin_file_pattern="model.safetensors"), ], tokenizer_config=None, processor_config=ModelConfig(model_id="Qwen/Qwen-Image-Edit", origin_file_pattern="processor/"), ) dataset_snapshot_download( dataset_id="DiffSynth-Studio/example_image_dataset", local_dir="./data/example_image_dataset", allow_file_pattern="inpaint/*.jpg" ) prompt = "Put sunglasses on this cat" controlnet_image = Image.open("./data/example_image_dataset/inpaint/image_1.jpg").convert("RGB").resize((1328, 1328)) inpaint_mask = Image.open("./data/example_image_dataset/inpaint/mask.jpg").convert("RGB").resize((1328, 1328)) image = pipe( prompt, seed=0, input_image=controlnet_image, inpaint_mask=inpaint_mask, blockwise_controlnet_inputs=[ControlNetInput(image=controlnet_image, inpaint_mask=inpaint_mask)], num_inference_steps=40, edit_image=controlnet_image, # add edit_image here. ) image.save("image.jpg") ``` --- license: apache-2.0 ---