--- frameworks: - Pytorch tasks: - text-to-image-synthesis #model-type: ##如 gpt、phi、llama、chatglm、baichuan 等 #- gpt #domain: ##如 nlp、cv、audio、multi-modal #- nlp #language: ##语言代码列表 https://help.aliyun.com/document_detail/215387.html?spm=a2c4g.11186623.0.0.9f8d7467kni6Aa #- cn #metrics: ##如 CIDEr、Blue、ROUGE 等 #- CIDEr #tags: ##各种自定义,包括 pretrained、fine-tuned、instruction-tuned、RL-tuned 等训练方法和其他 #- pretrained #tools: ##如 vllm、fastchat、llamacpp、AdaSeq 等 #- vllm base_model: - Qwen/Qwen-Image base_model_relation: adapter --- # Qwen-Image Image Structure Control Model ![](./assets/title.png) ## Model Introduction This model is a structure control model for images, trained based on [Qwen-Image](https://www.modelscope.cn/models/Qwen/Qwen-Image). The model architecture is ControlNet, capable of controlling the generated image structure according to edge detection (Canny) maps. The training framework is built upon [DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio) and the dataset used is [BLIP3o](https://modelscope.cn/datasets/BLIP3o/BLIP3o-60k)。 ## Effect Demonstration |Structure Map|Generated Image 1|Generated Image 2| |-|-|-| |![](./assets/canny_3.png)|![](./assets/image_3_1.png)|![](./assets/image_3_2.png)| |![](./assets/canny_2.png)|![](./assets/image_2_1.png)|![](./assets/image_2_2.png)| |![](./assets/canny_1.png)|![](./assets/image_1_1.png)|![](./assets/image_1_2.png)| ## Inference Code ``` git clone https://github.com/modelscope/DiffSynth-Studio.git cd DiffSynth-Studio pip install -e . ``` ```python from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig, ControlNetInput from PIL import Image import torch from modelscope import dataset_snapshot_download pipe = QwenImagePipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"), ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"), ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"), ModelConfig(model_id="DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Canny", origin_file_pattern="model.safetensors"), ], tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"), ) dataset_snapshot_download( dataset_id="DiffSynth-Studio/example_image_dataset", local_dir="./data/example_image_dataset", allow_file_pattern="canny/image_1.jpg" ) controlnet_image = Image.open("data/example_image_dataset/canny/image_1.jpg").resize((1328, 1328)) prompt = "A puppy with shiny, smooth fur and lively eyes, with a spring garden full of cherry blossoms as the background, beautiful and warm." image = pipe( prompt, seed=0, blockwise_controlnet_inputs=[ControlNetInput(image=controlnet_image)] ) image.save("image.jpg") ``` --- license: apache-2.0 ---