Update ST Model Zoo
Browse files
README.md
CHANGED
@@ -1,10 +1,3 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
license_name: sla0044
|
4 |
-
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32aimodelzoo/pose_estimation/yolov8n_pose/LICENSE.md
|
6 |
-
pipeline_tag: keypoint-detection
|
7 |
-
---
|
8 |
# Yolov8n_pose quantized
|
9 |
|
10 |
## **Use case** : `Pose estimation`
|
@@ -57,27 +50,32 @@ With an image resolution of NxM with K keypoints to detect :
|
|
57 |
## Metrics
|
58 |
|
59 |
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
62 |
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB)| STM32Cube.AI version | STEdgeAI Core version |
|
63 |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
64 |
-
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_192_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 477.56 | 0.0 | 3247.89 | 10.
|
65 |
-
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 1135 | 0.0 | 3265.22 | 10.
|
66 |
-
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_320_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6 | 2264.27 | 0.0 | 3263.72 | 10.
|
67 |
|
68 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
69 |
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
70 |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
71 |
-
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_192_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 24.46 | 40.89 | 10.
|
72 |
-
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 35.79 | 27.95 | 10.
|
73 |
-
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_320_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 51.35 | 19.48 | 10.
|
74 |
|
75 |
|
76 |
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
77 |
Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
78 |
|-----------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
79 |
-
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pc_uf_pose_coco-st.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 102.8 ms | 11.70 | 88.30 |0 |
|
80 |
-
| [YOLOv8n pose per tensor](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pt_uf_pose_coco-st.tflite) | Int8 | 256x256x3 | per-tensor | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 17.57 ms | 86.79 | 13.21 |0 |
|
81 |
|
82 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
83 |
|
@@ -129,5 +127,4 @@ Please refer to the [Ultralytics documentation](https://docs.ultralytics.com/tas
|
|
129 |
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
|
130 |
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
|
131 |
bibsource = {dblp computer science bibliography, https://dblp.org}
|
132 |
-
}
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Yolov8n_pose quantized
|
2 |
|
3 |
## **Use case** : `Pose estimation`
|
|
|
50 |
## Metrics
|
51 |
|
52 |
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
53 |
+
> [!CAUTION]
|
54 |
+
> All YOLOv8 hyperlinks in the tables below link to an external GitHub folder, which is subject to its own license terms:
|
55 |
+
https://github.com/stm32-hotspot/ultralytics/blob/main/LICENSE
|
56 |
+
Please also check the folder's README.md file for detailed information about its use and content:
|
57 |
+
https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/README.md
|
58 |
|
59 |
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
60 |
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB)| STM32Cube.AI version | STEdgeAI Core version |
|
61 |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
62 |
+
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_192_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 477.56 | 0.0 | 3247.89 | 10.2.0 | 2.2.0 |
|
63 |
+
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 1135 | 0.0 | 3265.22 | 10.2.0 | 2.2.0 |
|
64 |
+
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_320_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6 | 2264.27 | 0.0 | 3263.72 | 10.2.0 | 2.2.0 |
|
65 |
|
66 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
67 |
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
68 |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
69 |
+
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_192_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 24.46 | 40.89 | 10.2.0 | 2.2.0 |
|
70 |
+
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 35.79 | 27.95 | 10.2.0 | 2.2.0 |
|
71 |
+
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_320_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 51.35 | 19.48 | 10.2.0 | 2.2.0 |
|
72 |
|
73 |
|
74 |
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
75 |
Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
76 |
|-----------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
77 |
+
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pc_uf_pose_coco-st.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 102.8 ms | 11.70 | 88.30 |0 | v6.1.0 | OpenVX |
|
78 |
+
| [YOLOv8n pose per tensor](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pt_uf_pose_coco-st.tflite) | Int8 | 256x256x3 | per-tensor | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 17.57 ms | 86.79 | 13.21 |0 | v6.1.0 | OpenVX |
|
79 |
|
80 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
81 |
|
|
|
127 |
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
|
128 |
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
|
129 |
bibsource = {dblp computer science bibliography, https://dblp.org}
|
130 |
+
}
|
|