Keypoint Detection
FBAGSTM commited on
Commit
bdb40fd
·
verified ·
1 Parent(s): b02ac2f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -6
README.md CHANGED
@@ -1,6 +1,112 @@
1
- ---
2
- license: other
3
- license_name: sla0044
4
- license_link: >-
5
- https://github.com/STMicroelectronics/stm32ai-modelzoo/raw/refs/heads/main/pose_estimation/LICENSE.md
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: sla0044
4
+ license_link: >-
5
+ https://github.com/STMicroelectronics/stm32ai-modelzoo/raw/refs/heads/main/pose_estimation/LICENSE.md
6
+ pipeline_tag: keypoint-detection
7
+ ---
8
+ # Yolov11n_pose quantized
9
+
10
+ ## **Use case** : `Pose estimation`
11
+
12
+ # Model description
13
+
14
+ Yolov11n_pose is a lightweight and efficient model designed for multi pose estimation tasks. It is part of the YOLO (You Only Look Once) family of models, known for their real-time object detection capabilities. The "n" in Yolov11n_pose indicates that it is a nano version, optimized for speed and resource efficiency, making it suitable for deployment on devices with limited computational power, such as mobile devices and embedded systems.
15
+
16
+ Yolov11n_pose is implemented in Pytorch by Ultralytics and is quantized in int8 format using tensorflow lite converter.
17
+
18
+ ## Network information
19
+
20
+
21
+ | Network information | Value |
22
+ |-------------------------|-----------------|
23
+ | Framework | TensorFlow Lite |
24
+ | Quantization | int8 |
25
+ | Provenance | https://docs.ultralytics.com/tasks/pose/ |
26
+
27
+
28
+ ## Networks inputs / outputs
29
+
30
+ With an image resolution of NxM with K keypoints to detect :
31
+
32
+ | Input Shape | Description |
33
+ | ----- | ----------- |
34
+ | (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
35
+
36
+ | Output Shape | Description |
37
+ | ----- | ----------- |
38
+ | (1, Kx3, F) | FLOAT values Where F = (N/8)^2 + (N/16)^2 + (N/32)^2 is the 3 concatenated feature maps and K is the number of keypoints|
39
+
40
+
41
+ ## Recommended Platforms
42
+
43
+
44
+ | Platform | Supported | Recommended |
45
+ |----------|-----------|-------------|
46
+ | STM32L0 | [] | [] |
47
+ | STM32L4 | [] | [] |
48
+ | STM32U5 | [] | [] |
49
+ | STM32H7 | [] | [] |
50
+ | STM32MP1 | [] | [] |
51
+ | STM32MP2 | [] | [] |
52
+ | STM32N6 | [x] | [x] |
53
+
54
+
55
+ # Performances
56
+
57
+ ## Metrics
58
+
59
+ Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
60
+ > [!CAUTION]
61
+ > All YOLOv11 hyperlinks in the tables below link to an external GitHub folder, which is subject to its own license terms:
62
+ https://github.com/stm32-hotspot/ultralytics/blob/main/LICENSE
63
+ Please also check the folder's README.md file for detailed information about its use and content:
64
+ https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/README.md
65
+
66
+ ### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
67
+ |Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB)| STM32Cube.AI version | STEdgeAI Core version |
68
+ |----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
69
+ | [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolo11/yolo11n_256_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 742.95 | 0.0 | 3543.04 | 10.2.0 | 2.2.0 |
70
+
71
+
72
+ ### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
73
+ | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
74
+ |--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
75
+ | [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolo11/yolo11n_256_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 37.39 | 26.74 | 10.2.0 | 2.2.0 |
76
+
77
+
78
+
79
+ ## Integration in a simple example and other services support:
80
+
81
+ Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services).
82
+ The models are stored in the Ultralytics repository. You can find them at the following link: [Ultralytics YOLOv8-STEdgeAI Models](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/).
83
+
84
+ Please refer to the [Ultralytics documentation](https://docs.ultralytics.com/tasks/pose/#train) to retrain the models.
85
+
86
+
87
+ # References
88
+
89
+ <a id="1">[1]</a>
90
+ “Microsoft COCO: Common Objects in Context”. [Online]. Available: https://cocodataset.org/#download.
91
+ @article{DBLP:journals/corr/LinMBHPRDZ14,
92
+ author = {Tsung{-}Yi Lin and
93
+ Michael Maire and
94
+ Serge J. Belongie and
95
+ Lubomir D. Bourdev and
96
+ Ross B. Girshick and
97
+ James Hays and
98
+ Pietro Perona and
99
+ Deva Ramanan and
100
+ Piotr Doll{'{a} }r and
101
+ C. Lawrence Zitnick},
102
+ title = {Microsoft {COCO:} Common Objects in Context},
103
+ journal = {CoRR},
104
+ volume = {abs/1405.0312},
105
+ year = {2014},
106
+ url = {http://arxiv.org/abs/1405.0312},
107
+ archivePrefix = {arXiv},
108
+ eprint = {1405.0312},
109
+ timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
110
+ biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
111
+ bibsource = {dblp computer science bibliography, https://dblp.org}
112
+ }