Upload 3 files
Browse files
RmtDet_lines/epoch_12.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e356d393c6ed916b2b1ac085b3ef6075e1cbdad0a3148756f03bbcda41f2d658
|
| 3 |
+
size 474957088
|
RmtDet_lines/last_checkpoint
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
/home/erik/Riksarkivet/Projects/HTR_Pipeline/models/checkpoints/rtmdet_lines_pr_2/epoch_12.pth
|
RmtDet_lines/rtmdet_m_textregions_2_concat.py
ADDED
|
@@ -0,0 +1,580 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
default_scope = 'mmdet'
|
| 2 |
+
default_hooks = dict(
|
| 3 |
+
timer=dict(type='IterTimerHook'),
|
| 4 |
+
logger=dict(type='LoggerHook', interval=100),
|
| 5 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 6 |
+
checkpoint=dict(
|
| 7 |
+
type='CheckpointHook', interval=1, max_keep_ckpts=5, save_best='auto'),
|
| 8 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 9 |
+
visualization=dict(type='DetVisualizationHook'))
|
| 10 |
+
env_cfg = dict(
|
| 11 |
+
cudnn_benchmark=False,
|
| 12 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
| 13 |
+
dist_cfg=dict(backend='nccl'))
|
| 14 |
+
vis_backends = [dict(type='LocalVisBackend')]
|
| 15 |
+
visualizer = dict(
|
| 16 |
+
type='DetLocalVisualizer',
|
| 17 |
+
vis_backends=[dict(type='LocalVisBackend')],
|
| 18 |
+
name='visualizer',
|
| 19 |
+
save_dir='/home/erik/Riksarkivet/Projects/HTR_Pipeline/output')
|
| 20 |
+
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
|
| 21 |
+
log_level = 'INFO'
|
| 22 |
+
load_from = '/home/erik/Riksarkivet/Projects/HTR_Pipeline/models/checkpoints/rtmdet_lines_pr_2/epoch_11.pth'
|
| 23 |
+
resume = True
|
| 24 |
+
train_cfg = dict(
|
| 25 |
+
type='EpochBasedTrainLoop',
|
| 26 |
+
max_epochs=12,
|
| 27 |
+
val_interval=12,
|
| 28 |
+
dynamic_intervals=[(10, 1)])
|
| 29 |
+
val_cfg = dict(type='ValLoop')
|
| 30 |
+
test_cfg = dict(
|
| 31 |
+
type='TestLoop',
|
| 32 |
+
pipeline=[
|
| 33 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
| 34 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
| 35 |
+
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
| 36 |
+
dict(
|
| 37 |
+
type='PackDetInputs',
|
| 38 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
| 39 |
+
'scale_factor'))
|
| 40 |
+
])
|
| 41 |
+
param_scheduler = [
|
| 42 |
+
dict(
|
| 43 |
+
type='LinearLR', start_factor=1e-05, by_epoch=False, begin=0,
|
| 44 |
+
end=1000),
|
| 45 |
+
dict(
|
| 46 |
+
type='CosineAnnealingLR',
|
| 47 |
+
eta_min=1.25e-05,
|
| 48 |
+
begin=6,
|
| 49 |
+
end=12,
|
| 50 |
+
T_max=6,
|
| 51 |
+
by_epoch=True,
|
| 52 |
+
convert_to_iter_based=True)
|
| 53 |
+
]
|
| 54 |
+
optim_wrapper = dict(
|
| 55 |
+
type='OptimWrapper',
|
| 56 |
+
optimizer=dict(type='AdamW', lr=0.00025, weight_decay=0.05),
|
| 57 |
+
paramwise_cfg=dict(
|
| 58 |
+
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
|
| 59 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
| 60 |
+
dataset_type = 'CocoDataset'
|
| 61 |
+
data_root = 'data/coco/'
|
| 62 |
+
file_client_args = dict(backend='disk')
|
| 63 |
+
train_pipeline = [
|
| 64 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
| 65 |
+
dict(
|
| 66 |
+
type='LoadAnnotations',
|
| 67 |
+
with_bbox=True,
|
| 68 |
+
with_mask=True,
|
| 69 |
+
poly2mask=False),
|
| 70 |
+
dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0),
|
| 71 |
+
dict(
|
| 72 |
+
type='RandomResize',
|
| 73 |
+
scale=(1280, 1280),
|
| 74 |
+
ratio_range=(0.1, 2.0),
|
| 75 |
+
keep_ratio=True),
|
| 76 |
+
dict(
|
| 77 |
+
type='RandomCrop',
|
| 78 |
+
crop_size=(640, 640),
|
| 79 |
+
recompute_bbox=True,
|
| 80 |
+
allow_negative_crop=True),
|
| 81 |
+
dict(type='YOLOXHSVRandomAug'),
|
| 82 |
+
dict(type='RandomFlip', prob=0.5),
|
| 83 |
+
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
| 84 |
+
dict(
|
| 85 |
+
type='CachedMixUp',
|
| 86 |
+
img_scale=(640, 640),
|
| 87 |
+
ratio_range=(1.0, 1.0),
|
| 88 |
+
max_cached_images=20,
|
| 89 |
+
pad_val=(114, 114, 114)),
|
| 90 |
+
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
|
| 91 |
+
dict(type='PackDetInputs')
|
| 92 |
+
]
|
| 93 |
+
test_pipeline = [
|
| 94 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
| 95 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
| 96 |
+
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
| 97 |
+
dict(
|
| 98 |
+
type='PackDetInputs',
|
| 99 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
| 100 |
+
'scale_factor'))
|
| 101 |
+
]
|
| 102 |
+
tta_model = dict(
|
| 103 |
+
type='DetTTAModel',
|
| 104 |
+
tta_cfg=dict(nms=dict(type='nms', iou_threshold=0.6), max_per_img=100))
|
| 105 |
+
img_scales = [(640, 640), (320, 320), (960, 960)]
|
| 106 |
+
tta_pipeline = [
|
| 107 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
| 108 |
+
dict(
|
| 109 |
+
type='TestTimeAug',
|
| 110 |
+
transforms=[[{
|
| 111 |
+
'type': 'Resize',
|
| 112 |
+
'scale': (640, 640),
|
| 113 |
+
'keep_ratio': True
|
| 114 |
+
}, {
|
| 115 |
+
'type': 'Resize',
|
| 116 |
+
'scale': (320, 320),
|
| 117 |
+
'keep_ratio': True
|
| 118 |
+
}, {
|
| 119 |
+
'type': 'Resize',
|
| 120 |
+
'scale': (960, 960),
|
| 121 |
+
'keep_ratio': True
|
| 122 |
+
}],
|
| 123 |
+
[{
|
| 124 |
+
'type': 'RandomFlip',
|
| 125 |
+
'prob': 1.0
|
| 126 |
+
}, {
|
| 127 |
+
'type': 'RandomFlip',
|
| 128 |
+
'prob': 0.0
|
| 129 |
+
}],
|
| 130 |
+
[{
|
| 131 |
+
'type': 'Pad',
|
| 132 |
+
'size': (960, 960),
|
| 133 |
+
'pad_val': {
|
| 134 |
+
'img': (114, 114, 114)
|
| 135 |
+
}
|
| 136 |
+
}],
|
| 137 |
+
[{
|
| 138 |
+
'type':
|
| 139 |
+
'PackDetInputs',
|
| 140 |
+
'meta_keys':
|
| 141 |
+
('img_id', 'img_path', 'ori_shape', 'img_shape',
|
| 142 |
+
'scale_factor', 'flip', 'flip_direction')
|
| 143 |
+
}]])
|
| 144 |
+
]
|
| 145 |
+
model = dict(
|
| 146 |
+
type='RTMDet',
|
| 147 |
+
data_preprocessor=dict(
|
| 148 |
+
type='DetDataPreprocessor',
|
| 149 |
+
mean=[103.53, 116.28, 123.675],
|
| 150 |
+
std=[57.375, 57.12, 58.395],
|
| 151 |
+
bgr_to_rgb=False,
|
| 152 |
+
batch_augments=None),
|
| 153 |
+
backbone=dict(
|
| 154 |
+
type='CSPNeXt',
|
| 155 |
+
arch='P5',
|
| 156 |
+
expand_ratio=0.5,
|
| 157 |
+
deepen_factor=0.67,
|
| 158 |
+
widen_factor=0.75,
|
| 159 |
+
channel_attention=True,
|
| 160 |
+
norm_cfg=dict(type='SyncBN'),
|
| 161 |
+
act_cfg=dict(type='SiLU', inplace=True)),
|
| 162 |
+
neck=dict(
|
| 163 |
+
type='CSPNeXtPAFPN',
|
| 164 |
+
in_channels=[192, 384, 768],
|
| 165 |
+
out_channels=192,
|
| 166 |
+
num_csp_blocks=2,
|
| 167 |
+
expand_ratio=0.5,
|
| 168 |
+
norm_cfg=dict(type='SyncBN'),
|
| 169 |
+
act_cfg=dict(type='SiLU', inplace=True)),
|
| 170 |
+
bbox_head=dict(
|
| 171 |
+
type='RTMDetInsSepBNHead',
|
| 172 |
+
num_classes=80,
|
| 173 |
+
in_channels=192,
|
| 174 |
+
stacked_convs=2,
|
| 175 |
+
share_conv=True,
|
| 176 |
+
pred_kernel_size=1,
|
| 177 |
+
feat_channels=192,
|
| 178 |
+
act_cfg=dict(type='SiLU', inplace=True),
|
| 179 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
| 180 |
+
anchor_generator=dict(
|
| 181 |
+
type='MlvlPointGenerator', offset=0, strides=[8, 16, 32]),
|
| 182 |
+
bbox_coder=dict(type='DistancePointBBoxCoder'),
|
| 183 |
+
loss_cls=dict(
|
| 184 |
+
type='QualityFocalLoss',
|
| 185 |
+
use_sigmoid=True,
|
| 186 |
+
beta=2.0,
|
| 187 |
+
loss_weight=1.0),
|
| 188 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
|
| 189 |
+
loss_mask=dict(
|
| 190 |
+
type='DiceLoss', loss_weight=2.0, eps=5e-06, reduction='mean')),
|
| 191 |
+
train_cfg=dict(
|
| 192 |
+
assigner=dict(type='DynamicSoftLabelAssigner', topk=13),
|
| 193 |
+
allowed_border=-1,
|
| 194 |
+
pos_weight=-1,
|
| 195 |
+
debug=False),
|
| 196 |
+
test_cfg=dict(
|
| 197 |
+
nms_pre=200,
|
| 198 |
+
min_bbox_size=0,
|
| 199 |
+
score_thr=0.4,
|
| 200 |
+
nms=dict(type='nms', iou_threshold=0.6),
|
| 201 |
+
max_per_img=50,
|
| 202 |
+
mask_thr_binary=0.5))
|
| 203 |
+
train_pipeline_stage2 = [
|
| 204 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
| 205 |
+
dict(
|
| 206 |
+
type='LoadAnnotations',
|
| 207 |
+
with_bbox=True,
|
| 208 |
+
with_mask=True,
|
| 209 |
+
poly2mask=False),
|
| 210 |
+
dict(
|
| 211 |
+
type='RandomResize',
|
| 212 |
+
scale=(640, 640),
|
| 213 |
+
ratio_range=(0.1, 2.0),
|
| 214 |
+
keep_ratio=True),
|
| 215 |
+
dict(
|
| 216 |
+
type='RandomCrop',
|
| 217 |
+
crop_size=(640, 640),
|
| 218 |
+
recompute_bbox=True,
|
| 219 |
+
allow_negative_crop=True),
|
| 220 |
+
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
|
| 221 |
+
dict(type='YOLOXHSVRandomAug'),
|
| 222 |
+
dict(type='RandomFlip', prob=0.5),
|
| 223 |
+
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
| 224 |
+
dict(type='PackDetInputs')
|
| 225 |
+
]
|
| 226 |
+
train_dataloader = dict(
|
| 227 |
+
batch_size=2,
|
| 228 |
+
num_workers=1,
|
| 229 |
+
batch_sampler=None,
|
| 230 |
+
pin_memory=True,
|
| 231 |
+
persistent_workers=True,
|
| 232 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
| 233 |
+
dataset=dict(
|
| 234 |
+
type='ConcatDataset',
|
| 235 |
+
datasets=[
|
| 236 |
+
dict(
|
| 237 |
+
type='CocoDataset',
|
| 238 |
+
metainfo=dict(classes='text_line', palette=[(220, 20, 60)]),
|
| 239 |
+
data_prefix=dict(
|
| 240 |
+
img=
|
| 241 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/'
|
| 242 |
+
),
|
| 243 |
+
ann_file=
|
| 244 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/gt_files/coco_lines2.json',
|
| 245 |
+
pipeline=[
|
| 246 |
+
dict(
|
| 247 |
+
type='LoadImageFromFile',
|
| 248 |
+
file_client_args=dict(backend='disk')),
|
| 249 |
+
dict(
|
| 250 |
+
type='LoadAnnotations',
|
| 251 |
+
with_bbox=True,
|
| 252 |
+
with_mask=True,
|
| 253 |
+
poly2mask=False),
|
| 254 |
+
dict(
|
| 255 |
+
type='CachedMosaic',
|
| 256 |
+
img_scale=(640, 640),
|
| 257 |
+
pad_val=114.0),
|
| 258 |
+
dict(
|
| 259 |
+
type='RandomResize',
|
| 260 |
+
scale=(1280, 1280),
|
| 261 |
+
ratio_range=(0.1, 2.0),
|
| 262 |
+
keep_ratio=True),
|
| 263 |
+
dict(
|
| 264 |
+
type='RandomCrop',
|
| 265 |
+
crop_size=(640, 640),
|
| 266 |
+
recompute_bbox=True,
|
| 267 |
+
allow_negative_crop=True),
|
| 268 |
+
dict(type='YOLOXHSVRandomAug'),
|
| 269 |
+
dict(type='RandomFlip', prob=0.5),
|
| 270 |
+
dict(
|
| 271 |
+
type='Pad',
|
| 272 |
+
size=(640, 640),
|
| 273 |
+
pad_val=dict(img=(114, 114, 114))),
|
| 274 |
+
dict(
|
| 275 |
+
type='CachedMixUp',
|
| 276 |
+
img_scale=(640, 640),
|
| 277 |
+
ratio_range=(1.0, 1.0),
|
| 278 |
+
max_cached_images=20,
|
| 279 |
+
pad_val=(114, 114, 114)),
|
| 280 |
+
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
|
| 281 |
+
dict(type='PackDetInputs')
|
| 282 |
+
])
|
| 283 |
+
]))
|
| 284 |
+
val_dataloader = dict(
|
| 285 |
+
batch_size=1,
|
| 286 |
+
num_workers=10,
|
| 287 |
+
dataset=dict(
|
| 288 |
+
pipeline=[
|
| 289 |
+
dict(
|
| 290 |
+
type='LoadImageFromFile',
|
| 291 |
+
file_client_args=dict(backend='disk')),
|
| 292 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
| 293 |
+
dict(
|
| 294 |
+
type='Pad', size=(640, 640),
|
| 295 |
+
pad_val=dict(img=(114, 114, 114))),
|
| 296 |
+
dict(
|
| 297 |
+
type='PackDetInputs',
|
| 298 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
| 299 |
+
'scale_factor'))
|
| 300 |
+
],
|
| 301 |
+
type='CocoDataset',
|
| 302 |
+
metainfo=dict(classes='text_line', palette=[(220, 20, 60)]),
|
| 303 |
+
data_prefix=dict(
|
| 304 |
+
img=
|
| 305 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/'
|
| 306 |
+
),
|
| 307 |
+
ann_file=
|
| 308 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/gt_files/coco_regions2.json',
|
| 309 |
+
test_mode=True),
|
| 310 |
+
persistent_workers=True,
|
| 311 |
+
drop_last=False,
|
| 312 |
+
sampler=dict(type='DefaultSampler', shuffle=False))
|
| 313 |
+
test_dataloader = dict(
|
| 314 |
+
batch_size=1,
|
| 315 |
+
num_workers=10,
|
| 316 |
+
dataset=dict(
|
| 317 |
+
pipeline=[
|
| 318 |
+
dict(
|
| 319 |
+
type='LoadImageFromFile',
|
| 320 |
+
file_client_args=dict(backend='disk')),
|
| 321 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
| 322 |
+
dict(
|
| 323 |
+
type='Pad', size=(640, 640),
|
| 324 |
+
pad_val=dict(img=(114, 114, 114))),
|
| 325 |
+
dict(
|
| 326 |
+
type='PackDetInputs',
|
| 327 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
| 328 |
+
'scale_factor'))
|
| 329 |
+
],
|
| 330 |
+
type='CocoDataset',
|
| 331 |
+
metainfo=dict(classes='text_line', palette=[(220, 20, 60)]),
|
| 332 |
+
data_prefix=dict(
|
| 333 |
+
img=
|
| 334 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/'
|
| 335 |
+
),
|
| 336 |
+
ann_file=
|
| 337 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/gt_files/coco_regions2.json',
|
| 338 |
+
test_mode=True),
|
| 339 |
+
persistent_workers=True,
|
| 340 |
+
drop_last=False,
|
| 341 |
+
sampler=dict(type='DefaultSampler', shuffle=False))
|
| 342 |
+
max_epochs = 12
|
| 343 |
+
stage2_num_epochs = 2
|
| 344 |
+
base_lr = 0.00025
|
| 345 |
+
interval = 12
|
| 346 |
+
val_evaluator = dict(
|
| 347 |
+
proposal_nums=(100, 1, 10),
|
| 348 |
+
metric=['bbox', 'segm'],
|
| 349 |
+
type='CocoMetric',
|
| 350 |
+
ann_file=
|
| 351 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/gt_files/coco_lines2.json'
|
| 352 |
+
)
|
| 353 |
+
test_evaluator = dict(
|
| 354 |
+
proposal_nums=(100, 1, 10),
|
| 355 |
+
metric=['bbox', 'segm'],
|
| 356 |
+
type='CocoMetric',
|
| 357 |
+
ann_file=
|
| 358 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/gt_files/coco_lines2.json'
|
| 359 |
+
)
|
| 360 |
+
custom_hooks = [
|
| 361 |
+
dict(
|
| 362 |
+
type='EMAHook',
|
| 363 |
+
ema_type='ExpMomentumEMA',
|
| 364 |
+
momentum=0.0002,
|
| 365 |
+
update_buffers=True,
|
| 366 |
+
priority=49),
|
| 367 |
+
dict(
|
| 368 |
+
type='PipelineSwitchHook',
|
| 369 |
+
switch_epoch=10,
|
| 370 |
+
switch_pipeline=[
|
| 371 |
+
dict(
|
| 372 |
+
type='LoadImageFromFile',
|
| 373 |
+
file_client_args=dict(backend='disk')),
|
| 374 |
+
dict(
|
| 375 |
+
type='LoadAnnotations',
|
| 376 |
+
with_bbox=True,
|
| 377 |
+
with_mask=True,
|
| 378 |
+
poly2mask=False),
|
| 379 |
+
dict(
|
| 380 |
+
type='RandomResize',
|
| 381 |
+
scale=(640, 640),
|
| 382 |
+
ratio_range=(0.1, 2.0),
|
| 383 |
+
keep_ratio=True),
|
| 384 |
+
dict(
|
| 385 |
+
type='RandomCrop',
|
| 386 |
+
crop_size=(640, 640),
|
| 387 |
+
recompute_bbox=True,
|
| 388 |
+
allow_negative_crop=True),
|
| 389 |
+
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
|
| 390 |
+
dict(type='YOLOXHSVRandomAug'),
|
| 391 |
+
dict(type='RandomFlip', prob=0.5),
|
| 392 |
+
dict(
|
| 393 |
+
type='Pad', size=(640, 640),
|
| 394 |
+
pad_val=dict(img=(114, 114, 114))),
|
| 395 |
+
dict(type='PackDetInputs')
|
| 396 |
+
])
|
| 397 |
+
]
|
| 398 |
+
work_dir = '/home/erik/Riksarkivet/Projects/HTR_Pipeline/models/checkpoints/rtmdet_lines_pr_2'
|
| 399 |
+
train_batch_size_per_gpu = 2
|
| 400 |
+
val_batch_size_per_gpu = 1
|
| 401 |
+
train_num_workers = 1
|
| 402 |
+
num_classes = 1
|
| 403 |
+
metainfo = dict(classes='text_line', palette=[(220, 20, 60)])
|
| 404 |
+
icdar_2019 = dict(
|
| 405 |
+
type='CocoDataset',
|
| 406 |
+
metainfo=dict(classes='text_line', palette=[(220, 20, 60)]),
|
| 407 |
+
data_prefix=dict(
|
| 408 |
+
img=
|
| 409 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/ICDAR-2019/clean/'
|
| 410 |
+
),
|
| 411 |
+
ann_file=
|
| 412 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/ICDAR-2019/clean/gt_files/coco_regions2.json',
|
| 413 |
+
pipeline=[
|
| 414 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
| 415 |
+
dict(
|
| 416 |
+
type='LoadAnnotations',
|
| 417 |
+
with_bbox=True,
|
| 418 |
+
with_mask=True,
|
| 419 |
+
poly2mask=False),
|
| 420 |
+
dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0),
|
| 421 |
+
dict(
|
| 422 |
+
type='RandomResize',
|
| 423 |
+
scale=(1280, 1280),
|
| 424 |
+
ratio_range=(0.1, 2.0),
|
| 425 |
+
keep_ratio=True),
|
| 426 |
+
dict(
|
| 427 |
+
type='RandomCrop',
|
| 428 |
+
crop_size=(640, 640),
|
| 429 |
+
recompute_bbox=True,
|
| 430 |
+
allow_negative_crop=True),
|
| 431 |
+
dict(type='YOLOXHSVRandomAug'),
|
| 432 |
+
dict(type='RandomFlip', prob=0.5),
|
| 433 |
+
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
| 434 |
+
dict(
|
| 435 |
+
type='CachedMixUp',
|
| 436 |
+
img_scale=(640, 640),
|
| 437 |
+
ratio_range=(1.0, 1.0),
|
| 438 |
+
max_cached_images=20,
|
| 439 |
+
pad_val=(114, 114, 114)),
|
| 440 |
+
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
|
| 441 |
+
dict(type='PackDetInputs')
|
| 442 |
+
])
|
| 443 |
+
icdar_2019_test = dict(
|
| 444 |
+
type='CocoDataset',
|
| 445 |
+
metainfo=dict(classes='text_line', palette=[(220, 20, 60)]),
|
| 446 |
+
data_prefix=dict(
|
| 447 |
+
img=
|
| 448 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/ICDAR-2019/clean/'
|
| 449 |
+
),
|
| 450 |
+
ann_file=
|
| 451 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/ICDAR-2019/clean/gt_files/coco_lines.json',
|
| 452 |
+
test_mode=True,
|
| 453 |
+
pipeline=[
|
| 454 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
| 455 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
| 456 |
+
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
| 457 |
+
dict(
|
| 458 |
+
type='PackDetInputs',
|
| 459 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
| 460 |
+
'scale_factor'))
|
| 461 |
+
])
|
| 462 |
+
police_records = dict(
|
| 463 |
+
type='CocoDataset',
|
| 464 |
+
metainfo=dict(classes='text_line', palette=[(220, 20, 60)]),
|
| 465 |
+
data_prefix=dict(
|
| 466 |
+
img=
|
| 467 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/'
|
| 468 |
+
),
|
| 469 |
+
ann_file=
|
| 470 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/gt_files/coco_lines2.json',
|
| 471 |
+
pipeline=[
|
| 472 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
| 473 |
+
dict(
|
| 474 |
+
type='LoadAnnotations',
|
| 475 |
+
with_bbox=True,
|
| 476 |
+
with_mask=True,
|
| 477 |
+
poly2mask=False),
|
| 478 |
+
dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0),
|
| 479 |
+
dict(
|
| 480 |
+
type='RandomResize',
|
| 481 |
+
scale=(1280, 1280),
|
| 482 |
+
ratio_range=(0.1, 2.0),
|
| 483 |
+
keep_ratio=True),
|
| 484 |
+
dict(
|
| 485 |
+
type='RandomCrop',
|
| 486 |
+
crop_size=(640, 640),
|
| 487 |
+
recompute_bbox=True,
|
| 488 |
+
allow_negative_crop=True),
|
| 489 |
+
dict(type='YOLOXHSVRandomAug'),
|
| 490 |
+
dict(type='RandomFlip', prob=0.5),
|
| 491 |
+
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
| 492 |
+
dict(
|
| 493 |
+
type='CachedMixUp',
|
| 494 |
+
img_scale=(640, 640),
|
| 495 |
+
ratio_range=(1.0, 1.0),
|
| 496 |
+
max_cached_images=20,
|
| 497 |
+
pad_val=(114, 114, 114)),
|
| 498 |
+
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
|
| 499 |
+
dict(type='PackDetInputs')
|
| 500 |
+
])
|
| 501 |
+
train_list = [
|
| 502 |
+
dict(
|
| 503 |
+
type='CocoDataset',
|
| 504 |
+
metainfo=dict(classes='text_line', palette=[(220, 20, 60)]),
|
| 505 |
+
data_prefix=dict(
|
| 506 |
+
img=
|
| 507 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/'
|
| 508 |
+
),
|
| 509 |
+
ann_file=
|
| 510 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/gt_files/coco_lines2.json',
|
| 511 |
+
pipeline=[
|
| 512 |
+
dict(
|
| 513 |
+
type='LoadImageFromFile',
|
| 514 |
+
file_client_args=dict(backend='disk')),
|
| 515 |
+
dict(
|
| 516 |
+
type='LoadAnnotations',
|
| 517 |
+
with_bbox=True,
|
| 518 |
+
with_mask=True,
|
| 519 |
+
poly2mask=False),
|
| 520 |
+
dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0),
|
| 521 |
+
dict(
|
| 522 |
+
type='RandomResize',
|
| 523 |
+
scale=(1280, 1280),
|
| 524 |
+
ratio_range=(0.1, 2.0),
|
| 525 |
+
keep_ratio=True),
|
| 526 |
+
dict(
|
| 527 |
+
type='RandomCrop',
|
| 528 |
+
crop_size=(640, 640),
|
| 529 |
+
recompute_bbox=True,
|
| 530 |
+
allow_negative_crop=True),
|
| 531 |
+
dict(type='YOLOXHSVRandomAug'),
|
| 532 |
+
dict(type='RandomFlip', prob=0.5),
|
| 533 |
+
dict(
|
| 534 |
+
type='Pad', size=(640, 640),
|
| 535 |
+
pad_val=dict(img=(114, 114, 114))),
|
| 536 |
+
dict(
|
| 537 |
+
type='CachedMixUp',
|
| 538 |
+
img_scale=(640, 640),
|
| 539 |
+
ratio_range=(1.0, 1.0),
|
| 540 |
+
max_cached_images=20,
|
| 541 |
+
pad_val=(114, 114, 114)),
|
| 542 |
+
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
|
| 543 |
+
dict(type='PackDetInputs')
|
| 544 |
+
])
|
| 545 |
+
]
|
| 546 |
+
test_list = [
|
| 547 |
+
dict(
|
| 548 |
+
type='CocoDataset',
|
| 549 |
+
metainfo=dict(classes='text_line', palette=[(220, 20, 60)]),
|
| 550 |
+
data_prefix=dict(
|
| 551 |
+
img=
|
| 552 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/ICDAR-2019/clean/'
|
| 553 |
+
),
|
| 554 |
+
ann_file=
|
| 555 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/ICDAR-2019/clean/gt_files/coco_lines.json',
|
| 556 |
+
test_mode=True,
|
| 557 |
+
pipeline=[
|
| 558 |
+
dict(
|
| 559 |
+
type='LoadImageFromFile',
|
| 560 |
+
file_client_args=dict(backend='disk')),
|
| 561 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
| 562 |
+
dict(
|
| 563 |
+
type='Pad', size=(640, 640),
|
| 564 |
+
pad_val=dict(img=(114, 114, 114))),
|
| 565 |
+
dict(
|
| 566 |
+
type='PackDetInputs',
|
| 567 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
| 568 |
+
'scale_factor'))
|
| 569 |
+
])
|
| 570 |
+
]
|
| 571 |
+
pipeline = [
|
| 572 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
| 573 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
| 574 |
+
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
| 575 |
+
dict(
|
| 576 |
+
type='PackDetInputs',
|
| 577 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
| 578 |
+
'scale_factor'))
|
| 579 |
+
]
|
| 580 |
+
launcher = 'pytorch'
|