RichardErkhov commited on
Commit
9a7a34c
·
verified ·
1 Parent(s): a1cddbf

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +221 -0
README.md ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ InverseCoder-DS-6.7B - bnb 8bits
11
+ - Model creator: https://huggingface.co/wyt2000/
12
+ - Original model: https://huggingface.co/wyt2000/InverseCoder-DS-6.7B/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ license: other
20
+ license_name: deepseek
21
+ license_link: LICENSE
22
+ datasets:
23
+ - wyt2000/InverseCoder-DS-6.7B-Evol-Instruct-90K
24
+ - ise-uiuc/Magicoder-Evol-Instruct-110K
25
+ library_name: transformers
26
+ pipeline_tag: text-generation
27
+ tags:
28
+ - code
29
+ model-index:
30
+ - name: InverseCoder-DS-6.7B
31
+ results:
32
+ - task:
33
+ type: text-generation
34
+ dataset:
35
+ type: openai_humaneval
36
+ name: HumanEval
37
+ metrics:
38
+ - name: pass@1
39
+ type: pass@1
40
+ value: 0.799
41
+ verified: false
42
+ - task:
43
+ type: text-generation
44
+ dataset:
45
+ type: openai_humaneval
46
+ name: HumanEval(+)
47
+ metrics:
48
+ - name: pass@1
49
+ type: pass@1
50
+ value: 0.768
51
+ verified: false
52
+ - task:
53
+ type: text-generation
54
+ dataset:
55
+ type: mbpp
56
+ name: MBPP
57
+ metrics:
58
+ - name: pass@1
59
+ type: pass@1
60
+ value: 0.786
61
+ verified: false
62
+ - task:
63
+ type: text-generation
64
+ dataset:
65
+ type: mbpp
66
+ name: MBPP(+)
67
+ metrics:
68
+ - name: pass@1
69
+ type: pass@1
70
+ value: 0.690
71
+ verified: false
72
+ - task:
73
+ type: text-generation
74
+ dataset:
75
+ type: ds1000
76
+ name: DS-1000 (Overall Completion)
77
+ metrics:
78
+ - name: pass@1
79
+ type: pass@1
80
+ value: 0.442
81
+ verified: false
82
+ - task:
83
+ type: text-generation
84
+ dataset:
85
+ type: nuprl/MultiPL-E
86
+ name: MultiPL-HumanEval (Java)
87
+ metrics:
88
+ - name: pass@1
89
+ type: pass@1
90
+ value: 0.607
91
+ verified: false
92
+ - task:
93
+ type: text-generation
94
+ dataset:
95
+ type: nuprl/MultiPL-E
96
+ name: MultiPL-HumanEval (JavaScript)
97
+ metrics:
98
+ - name: pass@1
99
+ type: pass@1
100
+ value: 0.701
101
+ verified: false
102
+ - task:
103
+ type: text-generation
104
+ dataset:
105
+ type: nuprl/MultiPL-E
106
+ name: MultiPL-HumanEval (C++)
107
+ metrics:
108
+ - name: pass@1
109
+ type: pass@1
110
+ value: 0.705
111
+ verified: false
112
+ - task:
113
+ type: text-generation
114
+ dataset:
115
+ type: nuprl/MultiPL-E
116
+ name: MultiPL-HumanEval (PHP)
117
+ metrics:
118
+ - name: pass@1
119
+ type: pass@1
120
+ value: 0.636
121
+ verified: false
122
+ - task:
123
+ type: text-generation
124
+ dataset:
125
+ type: nuprl/MultiPL-E
126
+ name: MultiPL-HumanEval (Swift)
127
+ metrics:
128
+ - name: pass@1
129
+ type: pass@1
130
+ value: 0.530
131
+ verified: false
132
+ - task:
133
+ type: text-generation
134
+ dataset:
135
+ type: nuprl/MultiPL-E
136
+ name: MultiPL-HumanEval (Rust)
137
+ metrics:
138
+ - name: pass@1
139
+ type: pass@1
140
+ value: 0.574
141
+ verified: false
142
+ - task:
143
+ type: text-generation
144
+ dataset:
145
+ type: nuprl/MultiPL-E
146
+ name: MultiPL-HumanEval (Average for non-python languages)
147
+ metrics:
148
+ - name: pass@1
149
+ type: pass@1
150
+ value: 0.626
151
+ verified: false
152
+ ---
153
+ <div align="center">
154
+ <img src="https://huggingface.co/wyt2000/InverseCoder-CL-7B/resolve/main/assets/logo.png" style="zoom:25%;" />
155
+ </div>
156
+
157
+ # InverseCoder: Unleashing the Power of Instruction-Tuned Code LLMs with Inverse-Instruct
158
+
159
+ <img src="https://huggingface.co/wyt2000/InverseCoder-CL-7B/resolve/main/assets/overview.png" style="zoom:50%;" />
160
+
161
+ InverseCoder is a series of code LLMs instruction-tuned by generating data from itself through Inverse-Instruct.
162
+
163
+ ## Models and Datasets
164
+ | | Base Model | InverseCoder | Dataset |
165
+ | --- | ---------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------ |
166
+ | 6.7B | [deepseek-ai/deepseek-coder-6.7b-base](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base) | [wyt2000/InverseCoder-DS-6.7B](https://huggingface.co/wyt2000/InverseCoder-DS-6.7B) **<= You are here** | [wyt2000/InverseCoder-DS-6.7B-Evol-Instruct-90K](https://huggingface.co/datasets/wyt2000/InverseCoder-DS-6.7B-Evol-Instruct-90K) |
167
+ | 7B | [codellama/CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf) | [wyt2000/InverseCoder-CL-7B](https://huggingface.co/wyt2000/InverseCoder-CL-7B) | [wyt2000/InverseCoder-CL-7B-Evol-Instruct-90K](https://huggingface.co/datasets/wyt2000/InverseCoder-CL-7B-Evol-Instruct-90K) |
168
+ | 13B | [codellama/CodeLlama-13b-Python-hf](https://huggingface.co/codellama/CodeLlama-13b-Python-hf) | [wyt2000/InverseCoder-CL-13B](https://huggingface.co/wyt2000/InverseCoder-CL-13B) | [wyt2000/InverseCoder-CL-13B-Evol-Instruct-90K](https://huggingface.co/datasets/wyt2000/InverseCoder-CL-13B-Evol-Instruct-90K) |
169
+
170
+ ## Usage
171
+
172
+ Similar to [Magicoder-S-DS-6.7B](https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B/), use the code below to get started with the model. Make sure you installed the [transformers](https://huggingface.co/docs/transformers/index) library.
173
+
174
+ ```python
175
+ from transformers import pipeline
176
+ import torch
177
+ INVERSECODER_PROMPT = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
178
+ @@ Instruction
179
+ {instruction}
180
+ @@ Response
181
+ """
182
+ instruction = <Your code instruction here>
183
+ prompt = INVERSECODER_PROMPT.format(instruction=instruction)
184
+ generator = pipeline(
185
+ model="wyt2000/InverseCoder-DS-6.7B",
186
+ task="text-generation",
187
+ torch_dtype=torch.bfloat16,
188
+ device_map="auto",
189
+ )
190
+ result = generator(prompt, max_length=1024, num_return_sequences=1, temperature=0.0)
191
+ print(result[0]["generated_text"])
192
+ ```
193
+
194
+ ## Paper
195
+ **Arxiv:** <https://arxiv.org/abs/2407.05700>
196
+
197
+ Please cite the paper if you use the models or datasets from InverseCoder.
198
+
199
+ ```
200
+ @misc{wu2024inversecoderunleashingpowerinstructiontuned,
201
+ title={InverseCoder: Unleashing the Power of Instruction-Tuned Code LLMs with Inverse-Instruct},
202
+ author={Yutong Wu and Di Huang and Wenxuan Shi and Wei Wang and Lingzhe Gao and Shihao Liu and Ziyuan Nan and Kaizhao Yuan and Rui Zhang and Xishan Zhang and Zidong Du and Qi Guo and Yewen Pu and Dawei Yin and Xing Hu and Yunji Chen},
203
+ year={2024},
204
+ eprint={2407.05700},
205
+ archivePrefix={arXiv},
206
+ primaryClass={cs.CL},
207
+ url={https://arxiv.org/abs/2407.05700},
208
+ }
209
+ ```
210
+
211
+ ## Code
212
+
213
+ [Official code repo](https://github.com/wyt2000/InverseCoder) for Inverse-Instruct (under development).
214
+
215
+ ## Acknowledgements
216
+
217
+ * [Magicoder](https://github.com/ise-uiuc/magicoder): Training code, original datasets and data decontamination
218
+ * [DeepSeek-Coder](https://github.com/deepseek-ai/DeepSeek-Coder): Base model for InverseCoder-DS
219
+ * [CodeLlama](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/): Base model for InverseCoder-CL
220
+ * [AutoMathText](https://github.com/yifanzhang-pro/AutoMathText): Self-evaluation and data selection method
221
+