Upload modeling_minicpmv.py with huggingface_hub
Browse files- modeling_minicpmv.py +221 -0
modeling_minicpmv.py
ADDED
|
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
#
|
| 4 |
+
# Copyright @2023 AI, ZHIHU Inc. (zhihu.com)
|
| 5 |
+
#
|
| 6 |
+
# @author: wangchongyi <[email protected]>
|
| 7 |
+
# @date: 2023/9/1
|
| 8 |
+
#
|
| 9 |
+
|
| 10 |
+
# coding=utf-8
|
| 11 |
+
# Copyright 2024 RhapsodyAI. All rights reserved.
|
| 12 |
+
#
|
| 13 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 14 |
+
# you may not use this file except in compliance with the License.
|
| 15 |
+
# You may obtain a copy of the License at
|
| 16 |
+
#
|
| 17 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 18 |
+
#
|
| 19 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 20 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 21 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 22 |
+
# See the License for the specific language governing permissions and
|
| 23 |
+
# limitations under the License.
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
import torch
|
| 27 |
+
from torch import nn
|
| 28 |
+
import math
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
from typing import Optional, Tuple
|
| 31 |
+
|
| 32 |
+
from transformers.utils import ModelOutput
|
| 33 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 34 |
+
|
| 35 |
+
from .configuration_siglip import SiglipVisionConfig
|
| 36 |
+
from .configuration_minicpm import MiniCPMConfig
|
| 37 |
+
from .configuration_minicpmv import MiniCPMVConfig
|
| 38 |
+
|
| 39 |
+
from .resampler import Resampler
|
| 40 |
+
from .modeling_minicpm import MiniCPMForCausalLM
|
| 41 |
+
from .modeling_siglip import SiglipVisionModel
|
| 42 |
+
|
| 43 |
+
from transformers import LlamaTokenizer # for text processing
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
@dataclass
|
| 47 |
+
class CausalVLMOutput(ModelOutput):
|
| 48 |
+
loss: Optional[torch.FloatTensor] = None
|
| 49 |
+
logits: torch.FloatTensor = None
|
| 50 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 51 |
+
vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 52 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class MiniCPMVForCausalLM(PreTrainedModel):
|
| 56 |
+
model_type = "minicpm"
|
| 57 |
+
_supports_flash_attn_2 = True
|
| 58 |
+
|
| 59 |
+
def __init__(self, config: MiniCPMVConfig, adaptive=False):
|
| 60 |
+
super().__init__(config)
|
| 61 |
+
|
| 62 |
+
llm_config = config.llm_config
|
| 63 |
+
vpm_config = config.vpm_config
|
| 64 |
+
|
| 65 |
+
self.query_num = config.query_num
|
| 66 |
+
self.patch_size = vpm_config.patch_size
|
| 67 |
+
self.adaptive = adaptive
|
| 68 |
+
self.slice_mode = config.slice_mode
|
| 69 |
+
self.max_slice_nums = config.max_slice_nums
|
| 70 |
+
self.mm_use_im_start_end = config.mm_use_im_start_end
|
| 71 |
+
|
| 72 |
+
drop_vision_last_layer = config.drop_vision_last_layer
|
| 73 |
+
|
| 74 |
+
# should assert vpm_config is SiglipVisionConfig
|
| 75 |
+
vpm = SiglipVisionModel(vpm_config).vision_model
|
| 76 |
+
|
| 77 |
+
if drop_vision_last_layer: # drop last vision layer
|
| 78 |
+
vpm.encoder.layers = nn.ModuleList(vpm.encoder.layers[:-1])
|
| 79 |
+
|
| 80 |
+
self.vpm = vpm
|
| 81 |
+
|
| 82 |
+
# should assert llm_config is minicpmconfig
|
| 83 |
+
self.llm = MiniCPMForCausalLM(llm_config)
|
| 84 |
+
|
| 85 |
+
embed_dim = llm_config.hidden_size
|
| 86 |
+
|
| 87 |
+
self.resampler = Resampler(
|
| 88 |
+
num_queries=config.query_num,
|
| 89 |
+
embed_dim=embed_dim,
|
| 90 |
+
num_heads=embed_dim // 128,
|
| 91 |
+
kv_dim=vpm_config.hidden_size,
|
| 92 |
+
adaptive=adaptive
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
return
|
| 96 |
+
|
| 97 |
+
def vpm_forward(self, data):
|
| 98 |
+
if 'vision_hidden_states' not in data:
|
| 99 |
+
dtype = self.vpm.embeddings.position_embedding.weight.dtype
|
| 100 |
+
device = self.vpm.embeddings.position_embedding.weight.device
|
| 101 |
+
|
| 102 |
+
pixel_values_list = data['pixel_values']
|
| 103 |
+
tgt_sizes = data['tgt_sizes']
|
| 104 |
+
|
| 105 |
+
vision_hidden_states = []
|
| 106 |
+
|
| 107 |
+
all_pixel_values = []
|
| 108 |
+
img_cnt = []
|
| 109 |
+
|
| 110 |
+
for pixel_values in pixel_values_list:
|
| 111 |
+
img_cnt.append(len(pixel_values))
|
| 112 |
+
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values]) # 42 * L
|
| 113 |
+
|
| 114 |
+
# exist image
|
| 115 |
+
if all_pixel_values:
|
| 116 |
+
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
|
| 117 |
+
max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])
|
| 118 |
+
|
| 119 |
+
all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True, padding_value=0.0)
|
| 120 |
+
all_pixel_values = all_pixel_values.to(device) # here we finally could put `all_pixel_values` to device.
|
| 121 |
+
|
| 122 |
+
B, L, _ = all_pixel_values.shape
|
| 123 |
+
all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L) # B, 3, 14, L
|
| 124 |
+
|
| 125 |
+
patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
|
| 126 |
+
for i in range(B):
|
| 127 |
+
patch_attn_mask[i, :tgt_sizes[i][0] * tgt_sizes[i][1]] = True
|
| 128 |
+
|
| 129 |
+
vision_embedding = self.vpm(all_pixel_values.type(dtype), patch_attention_mask=patch_attn_mask).last_hidden_state
|
| 130 |
+
vision_embedding = self.resampler(vision_embedding, tgt_sizes)
|
| 131 |
+
|
| 132 |
+
start = 0
|
| 133 |
+
for pixel_values in pixel_values_list:
|
| 134 |
+
img_cnt = len(pixel_values)
|
| 135 |
+
if img_cnt > 0:
|
| 136 |
+
vision_hidden_states.append(vision_embedding[start: start + img_cnt])
|
| 137 |
+
start += img_cnt
|
| 138 |
+
else:
|
| 139 |
+
vision_hidden_states.append([])
|
| 140 |
+
else: # no image
|
| 141 |
+
if self.training:
|
| 142 |
+
dummy_image = torch.zeros(
|
| 143 |
+
(1, 3, 224, 224),
|
| 144 |
+
device=device, dtype=dtype
|
| 145 |
+
)
|
| 146 |
+
# 这是一个 dummy feature
|
| 147 |
+
tgt_sizes = torch.Tensor([[(224 // self.patch_size), math.ceil(224 / self.patch_size)]]).type(torch.int32)
|
| 148 |
+
dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
|
| 149 |
+
else:
|
| 150 |
+
dummy_feature = []
|
| 151 |
+
for _ in range(len(pixel_values_list)):
|
| 152 |
+
vision_hidden_states.append(dummy_feature)
|
| 153 |
+
|
| 154 |
+
else:
|
| 155 |
+
vision_hidden_states = data['vision_hidden_states']
|
| 156 |
+
|
| 157 |
+
if hasattr(self.llm.config, 'scale_emb'):
|
| 158 |
+
vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
|
| 159 |
+
else:
|
| 160 |
+
vllm_embedding = self.llm.model.embed_tokens(data['input_ids'])
|
| 161 |
+
|
| 162 |
+
vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance(
|
| 163 |
+
i, torch.Tensor) else i for i in vision_hidden_states]
|
| 164 |
+
|
| 165 |
+
bs = len(data['input_ids'])
|
| 166 |
+
for i in range(bs):
|
| 167 |
+
cur_vs_hs = vision_hidden_states[i]
|
| 168 |
+
|
| 169 |
+
if len(cur_vs_hs) > 0:
|
| 170 |
+
|
| 171 |
+
cur_vllm_emb = vllm_embedding[i]
|
| 172 |
+
|
| 173 |
+
cur_image_bound = data['image_bound'][i]
|
| 174 |
+
|
| 175 |
+
if len(cur_image_bound) > 0:
|
| 176 |
+
|
| 177 |
+
image_indices = torch.stack(
|
| 178 |
+
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
|
| 179 |
+
).to(vllm_embedding.device)
|
| 180 |
+
|
| 181 |
+
cur_vllm_emb.scatter_(
|
| 182 |
+
0,
|
| 183 |
+
image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
|
| 184 |
+
cur_vs_hs.view(-1, cur_vs_hs.shape[-1])
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
return vllm_embedding, vision_hidden_states
|
| 188 |
+
|
| 189 |
+
def forward(self, data, **kwargs):
|
| 190 |
+
vllm_embedding, vision_hidden_states = self.vpm_forward(data)
|
| 191 |
+
|
| 192 |
+
output = self.llm(
|
| 193 |
+
inputs_embeds=vllm_embedding,
|
| 194 |
+
attention_mask=data["attention_mask"],
|
| 195 |
+
return_dict=True
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
return CausalVLMOutput(
|
| 199 |
+
logits=output.logits,
|
| 200 |
+
hidden_states=output.hidden_states,
|
| 201 |
+
vision_hidden_states=vision_hidden_states
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
def generate(self, data, **kwargs):
|
| 205 |
+
vllm_embedding, vision_hidden_states = self.vpm_forward(data)
|
| 206 |
+
|
| 207 |
+
# position_ids = torch.arange(data["input_ids"].size(1), dtype=torch.long).to(data["input_ids"].device)
|
| 208 |
+
# position_ids = position_ids.unsqueeze(0).expand_as(data["input_ids"])
|
| 209 |
+
|
| 210 |
+
# 使用attention_mask将填充位置的position_ids设置为0
|
| 211 |
+
# position_ids = position_ids * data["attention_mask"]
|
| 212 |
+
output = self.llm.generate(
|
| 213 |
+
inputs_embeds=vllm_embedding,
|
| 214 |
+
# position_ids=position_ids,
|
| 215 |
+
attention_mask=data["attention_mask"],
|
| 216 |
+
**kwargs
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
return output
|
| 220 |
+
|
| 221 |
+
|