Redgerd commited on
Commit
b47a994
·
verified ·
1 Parent(s): a163694

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -9
README.md CHANGED
@@ -58,9 +58,7 @@ model = build_model() # Architecture defined in the `build_model` function
58
  model.load_weights(model_path)
59
  ```
60
 
61
- #### 3\. Model Definition
62
-
63
- The `build_model` function defines the architecture:
64
 
65
  ```python
66
  import tensorflow as tf
@@ -68,7 +66,6 @@ from tensorflow import keras
68
  from tensorflow.keras import layers
69
 
70
  # Global parameters for model input shape (ensure these are defined before calling build_model)
71
- # Example:
72
  # TIME_STEPS = 30
73
  # HEIGHT = 299
74
  # WIDTH = 299
@@ -76,22 +73,17 @@ from tensorflow.keras import layers
76
  def build_model(lstm_hidden_size=256, num_classes=2, dropout_rate=0.5):
77
  # Input shape: (batch_size, TIME_STEPS, HEIGHT, WIDTH, 3)
78
  inputs = layers.Input(shape=(TIME_STEPS, HEIGHT, WIDTH, 3))
79
-
80
  # TimeDistributed layer to apply the base model to each frame
81
  base_model = keras.applications.Xception(weights='imagenet', include_top=False, pooling='avg')
82
  # For inference, we don't need to set trainable, but if you plan to retrain, you can set accordingly
83
  # base_model.trainable = False
84
-
85
  # Apply TimeDistributed wrapper
86
  x = layers.TimeDistributed(base_model)(inputs)
87
  # x shape: (batch_size, TIME_STEPS, 2048)
88
-
89
  # LSTM layer
90
  x = layers.LSTM(lstm_hidden_size)(x)
91
-
92
  x = layers.Dropout(dropout_rate)(x)
93
  outputs = layers.Dense(num_classes, activation='softmax')(x)
94
-
95
  model = keras.Model(inputs, outputs)
96
  return model
97
  ```
 
58
  model.load_weights(model_path)
59
  ```
60
 
61
+ The `build_model` function defines the architecture as:
 
 
62
 
63
  ```python
64
  import tensorflow as tf
 
66
  from tensorflow.keras import layers
67
 
68
  # Global parameters for model input shape (ensure these are defined before calling build_model)
 
69
  # TIME_STEPS = 30
70
  # HEIGHT = 299
71
  # WIDTH = 299
 
73
  def build_model(lstm_hidden_size=256, num_classes=2, dropout_rate=0.5):
74
  # Input shape: (batch_size, TIME_STEPS, HEIGHT, WIDTH, 3)
75
  inputs = layers.Input(shape=(TIME_STEPS, HEIGHT, WIDTH, 3))
 
76
  # TimeDistributed layer to apply the base model to each frame
77
  base_model = keras.applications.Xception(weights='imagenet', include_top=False, pooling='avg')
78
  # For inference, we don't need to set trainable, but if you plan to retrain, you can set accordingly
79
  # base_model.trainable = False
 
80
  # Apply TimeDistributed wrapper
81
  x = layers.TimeDistributed(base_model)(inputs)
82
  # x shape: (batch_size, TIME_STEPS, 2048)
 
83
  # LSTM layer
84
  x = layers.LSTM(lstm_hidden_size)(x)
 
85
  x = layers.Dropout(dropout_rate)(x)
86
  outputs = layers.Dense(num_classes, activation='softmax')(x)
 
87
  model = keras.Model(inputs, outputs)
88
  return model
89
  ```