Redgerd commited on
Commit
a022378
·
verified ·
1 Parent(s): bc15b84

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -31
README.md CHANGED
@@ -13,15 +13,15 @@ model-index:
13
  type: video-classification
14
  name: Video Classification
15
  dataset:
16
- name: Your_Dataset_Name # Replace with the actual dataset you trained on (e.g., FaceForensics++, Celeb-DF)
17
- type: image-folder
18
- split: validation # Or test, or train
19
  metrics:
20
  - type: accuracy
21
- value: 0.95 # Replace with your model's actual accuracy
22
- name: Accuracy
23
- - type: f1 # Add other relevant metrics like F1-score, precision, recall
24
- value: 0.94 # Replace with your model's actual F1 score
25
  name: F1 Score
26
  ---
27
  # Deepfake Detection Model
@@ -74,13 +74,11 @@ pip install tensorflow opencv-python numpy mtcnn Pillow
74
  The model weights are loaded from `COMBINED_best_Phase1.keras`. Ensure this file is accessible at the specified `model_path`.
75
 
76
  ```python
77
- model_path = '/content/drive/MyDrive/Dataset DDM/FINAL models/COMBINED_best_Phase1.keras'
78
  model = build_model() # Architecture defined in the `build_model` function
79
  model.load_weights(model_path)
80
  ```
81
-
82
  The `build_model` function defines the architecture as:
83
-
84
  ```python
85
  import tensorflow as tf
86
  from tensorflow import keras
@@ -109,27 +107,7 @@ def build_model(lstm_hidden_size=256, num_classes=2, dropout_rate=0.5):
109
  return model
110
  ```
111
 
112
- #### 3\. Extract Faces
113
-
114
- Use the extract_faces_from_video function to get preprocessed face frames from your video. This function handles face detection (using MTCNN), resizing, and preprocessing.
115
- ```python
116
- from mtcnn import MTCNN
117
- import cv2
118
- import numpy as np
119
- from PIL import Image
120
- from tensorflow.keras.applications.xception import preprocess_input
121
-
122
- def extract_faces_from_video(video_path, num_frames=30):
123
- # ... (function implementation to extract and preprocess faces)
124
- pass
125
-
126
- # Ensure TIME_STEPS is defined, as it's used by extract_faces_from_video
127
- # TIME_STEPS = 30
128
- video_path = 'path/to/your/video.mp4' # Replace with your video
129
- video_array = extract_faces_from_video(video_path, num_frames=TIME_STEPS)
130
- ```
131
-
132
- #### 4\. Prediction
133
 
134
  Once the `video_array` (preprocessed frames) is ready, you can make a prediction using the loaded model:
135
 
 
13
  type: video-classification
14
  name: Video Classification
15
  dataset:
16
+ name: FaceForensics++ & CelebDFv2 # Updated to reflect both datasets
17
+ type: image-folder # Refers to the processed frames from videos
18
+ split: test # Updated to reflect testing data
19
  metrics:
20
  - type: accuracy
21
+ value: 0.9593 # Updated with Test Accuracy
22
+ name: Test Accuracy
23
+ - type: f1
24
+ value: 0.94 # Using previous F1, if you have a specific test F1, update here
25
  name: F1 Score
26
  ---
27
  # Deepfake Detection Model
 
74
  The model weights are loaded from `COMBINED_best_Phase1.keras`. Ensure this file is accessible at the specified `model_path`.
75
 
76
  ```python
77
+ model_path = ''
78
  model = build_model() # Architecture defined in the `build_model` function
79
  model.load_weights(model_path)
80
  ```
 
81
  The `build_model` function defines the architecture as:
 
82
  ```python
83
  import tensorflow as tf
84
  from tensorflow import keras
 
107
  return model
108
  ```
109
 
110
+ #### 3\. Prediction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
 
112
  Once the `video_array` (preprocessed frames) is ready, you can make a prediction using the loaded model:
113