Build (aarch64)
Browse files- build/torch26-cxx11-cu126-aarch64-linux/quantization/__init__.py +9 -0
- build/torch26-cxx11-cu126-aarch64-linux/quantization/_ops.py +3 -3
- build/torch26-cxx11-cu126-aarch64-linux/quantization/{_quantization_9035540.abi3.so → _quantization_82ffd1f.abi3.so} +2 -2
- build/torch26-cxx11-cu126-aarch64-linux/quantization/compressed_tensors.py +3 -1
- build/torch26-cxx11-cu126-aarch64-linux/quantization/platforms.py +35 -0
- build/torch26-cxx98-cu126-aarch64-linux/quantization/__init__.py +9 -0
- build/torch26-cxx98-cu126-aarch64-linux/quantization/_ops.py +3 -3
- build/torch26-cxx98-cu126-aarch64-linux/quantization/{_quantization_9035540.abi3.so → _quantization_82ffd1f.abi3.so} +1 -1
- build/torch26-cxx98-cu126-aarch64-linux/quantization/compressed_tensors.py +3 -1
- build/torch26-cxx98-cu126-aarch64-linux/quantization/platforms.py +35 -0
- build/torch27-cxx11-cu126-aarch64-linux/quantization/__init__.py +9 -0
- build/torch27-cxx11-cu126-aarch64-linux/quantization/_ops.py +3 -3
- build/torch27-cxx11-cu126-aarch64-linux/quantization/{_quantization_9035540.abi3.so → _quantization_82ffd1f.abi3.so} +2 -2
- build/torch27-cxx11-cu126-aarch64-linux/quantization/compressed_tensors.py +3 -1
- build/torch27-cxx11-cu126-aarch64-linux/quantization/platforms.py +35 -0
- build/torch27-cxx11-cu128-aarch64-linux/quantization/__init__.py +9 -0
- build/torch27-cxx11-cu128-aarch64-linux/quantization/_ops.py +3 -3
- build/torch27-cxx11-cu128-aarch64-linux/quantization/{_quantization_9035540.abi3.so → _quantization_82ffd1f.abi3.so} +2 -2
- build/torch27-cxx11-cu128-aarch64-linux/quantization/compressed_tensors.py +3 -1
- build/torch27-cxx11-cu128-aarch64-linux/quantization/platforms.py +35 -0
build/torch26-cxx11-cu126-aarch64-linux/quantization/__init__.py
CHANGED
|
@@ -19,6 +19,11 @@ from .scalar_type import (
|
|
| 19 |
)
|
| 20 |
from ._ops import ops
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
__all__ = [
|
| 24 |
"ScalarType",
|
|
@@ -32,7 +37,11 @@ __all__ = [
|
|
| 32 |
"gptq_marlin_repack",
|
| 33 |
"marlin_gemm",
|
| 34 |
"marlin_qqq_gemm",
|
|
|
|
|
|
|
|
|
|
| 35 |
"ops",
|
|
|
|
| 36 |
"scalar_types",
|
| 37 |
"scaled_fp8_quant",
|
| 38 |
"scaled_int8_quant",
|
|
|
|
| 19 |
)
|
| 20 |
from ._ops import ops
|
| 21 |
|
| 22 |
+
from .utils import marlin_utils
|
| 23 |
+
from .utils import marlin_utils_fp4
|
| 24 |
+
from .utils import marlin_utils_fp8
|
| 25 |
+
from .utils import quant_utils
|
| 26 |
+
|
| 27 |
|
| 28 |
__all__ = [
|
| 29 |
"ScalarType",
|
|
|
|
| 37 |
"gptq_marlin_repack",
|
| 38 |
"marlin_gemm",
|
| 39 |
"marlin_qqq_gemm",
|
| 40 |
+
"marlin_utils",
|
| 41 |
+
"marlin_utils_fp4",
|
| 42 |
+
"marlin_utils_fp8",
|
| 43 |
"ops",
|
| 44 |
+
"quant_utils",
|
| 45 |
"scalar_types",
|
| 46 |
"scaled_fp8_quant",
|
| 47 |
"scaled_int8_quant",
|
build/torch26-cxx11-cu126-aarch64-linux/quantization/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _quantization_82ffd1f
|
| 3 |
+
ops = torch.ops._quantization_82ffd1f
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_quantization_82ffd1f::{op_name}"
|
build/torch26-cxx11-cu126-aarch64-linux/quantization/{_quantization_9035540.abi3.so → _quantization_82ffd1f.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:163383785e3ca9a472f18c802591218f18ef3c9cde4bb83fa623575a8adfd085
|
| 3 |
+
size 159999656
|
build/torch26-cxx11-cu126-aarch64-linux/quantization/compressed_tensors.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
-
from typing import Optional,
|
| 2 |
|
| 3 |
import torch
|
| 4 |
|
| 5 |
from ._ops import ops
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# fp8
|
| 8 |
def scaled_fp8_quant(
|
|
|
|
| 1 |
+
from typing import Optional, Union
|
| 2 |
|
| 3 |
import torch
|
| 4 |
|
| 5 |
from ._ops import ops
|
| 6 |
+
from .platforms import current_platform
|
| 7 |
+
|
| 8 |
|
| 9 |
# fp8
|
| 10 |
def scaled_fp8_quant(
|
build/torch26-cxx11-cu126-aarch64-linux/quantization/platforms.py
CHANGED
|
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
|
|
| 27 |
class Platform(ABC):
|
| 28 |
simple_compile_backend: str = "inductor"
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
@classmethod
|
| 31 |
@abstractmethod
|
| 32 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
|
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
|
|
| 51 |
|
| 52 |
|
| 53 |
class RocmPlatform(Platform):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
@classmethod
|
| 55 |
@lru_cache(maxsize=8)
|
| 56 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|
|
|
|
| 27 |
class Platform(ABC):
|
| 28 |
simple_compile_backend: str = "inductor"
|
| 29 |
|
| 30 |
+
@classmethod
|
| 31 |
+
def fp8_dtype(cls) -> torch.dtype:
|
| 32 |
+
"""
|
| 33 |
+
Returns the preferred FP8 type on the current platform.
|
| 34 |
+
|
| 35 |
+
See the documentation for is_fp8_fnuz for details.
|
| 36 |
+
"""
|
| 37 |
+
return torch.float8_e4m3fn
|
| 38 |
+
|
| 39 |
+
@classmethod
|
| 40 |
+
def is_fp8_fnuz(cls) -> bool:
|
| 41 |
+
"""
|
| 42 |
+
Returns whether the preferred FP8 type is FNUZ on the current platform.
|
| 43 |
+
|
| 44 |
+
There are two representations of FP8, OCP FP8 and FNUZ FP8.
|
| 45 |
+
The OCP specification can be found at https://tinyurl.com/b7jvwpft.
|
| 46 |
+
The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
|
| 47 |
+
|
| 48 |
+
AMD's MI300 and MI325 have native hardware support for FNUZ. All other
|
| 49 |
+
hardware has converged on the OCP FP8 standard.
|
| 50 |
+
"""
|
| 51 |
+
return False
|
| 52 |
+
|
| 53 |
@classmethod
|
| 54 |
@abstractmethod
|
| 55 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
|
|
|
| 74 |
|
| 75 |
|
| 76 |
class RocmPlatform(Platform):
|
| 77 |
+
@classmethod
|
| 78 |
+
def fp8_dtype(cls) -> torch.dtype:
|
| 79 |
+
if cls.is_fp8_fnuz():
|
| 80 |
+
return torch.float8_e4m3fnuz
|
| 81 |
+
else:
|
| 82 |
+
return torch.float8_e4m3fn
|
| 83 |
+
|
| 84 |
+
@classmethod
|
| 85 |
+
def is_fp8_fnuz(cls) -> bool:
|
| 86 |
+
# only device 0 is checked, this assumes MI300 platforms are homogeneous
|
| 87 |
+
return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
|
| 88 |
+
|
| 89 |
@classmethod
|
| 90 |
@lru_cache(maxsize=8)
|
| 91 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|
build/torch26-cxx98-cu126-aarch64-linux/quantization/__init__.py
CHANGED
|
@@ -19,6 +19,11 @@ from .scalar_type import (
|
|
| 19 |
)
|
| 20 |
from ._ops import ops
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
__all__ = [
|
| 24 |
"ScalarType",
|
|
@@ -32,7 +37,11 @@ __all__ = [
|
|
| 32 |
"gptq_marlin_repack",
|
| 33 |
"marlin_gemm",
|
| 34 |
"marlin_qqq_gemm",
|
|
|
|
|
|
|
|
|
|
| 35 |
"ops",
|
|
|
|
| 36 |
"scalar_types",
|
| 37 |
"scaled_fp8_quant",
|
| 38 |
"scaled_int8_quant",
|
|
|
|
| 19 |
)
|
| 20 |
from ._ops import ops
|
| 21 |
|
| 22 |
+
from .utils import marlin_utils
|
| 23 |
+
from .utils import marlin_utils_fp4
|
| 24 |
+
from .utils import marlin_utils_fp8
|
| 25 |
+
from .utils import quant_utils
|
| 26 |
+
|
| 27 |
|
| 28 |
__all__ = [
|
| 29 |
"ScalarType",
|
|
|
|
| 37 |
"gptq_marlin_repack",
|
| 38 |
"marlin_gemm",
|
| 39 |
"marlin_qqq_gemm",
|
| 40 |
+
"marlin_utils",
|
| 41 |
+
"marlin_utils_fp4",
|
| 42 |
+
"marlin_utils_fp8",
|
| 43 |
"ops",
|
| 44 |
+
"quant_utils",
|
| 45 |
"scalar_types",
|
| 46 |
"scaled_fp8_quant",
|
| 47 |
"scaled_int8_quant",
|
build/torch26-cxx98-cu126-aarch64-linux/quantization/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _quantization_82ffd1f
|
| 3 |
+
ops = torch.ops._quantization_82ffd1f
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_quantization_82ffd1f::{op_name}"
|
build/torch26-cxx98-cu126-aarch64-linux/quantization/{_quantization_9035540.abi3.so → _quantization_82ffd1f.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 159991696
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f2bf0942eeeb2b821331211fc74ce7c37fccad95fc1ac6aa8bbc322a6f8ac249
|
| 3 |
size 159991696
|
build/torch26-cxx98-cu126-aarch64-linux/quantization/compressed_tensors.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
-
from typing import Optional,
|
| 2 |
|
| 3 |
import torch
|
| 4 |
|
| 5 |
from ._ops import ops
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# fp8
|
| 8 |
def scaled_fp8_quant(
|
|
|
|
| 1 |
+
from typing import Optional, Union
|
| 2 |
|
| 3 |
import torch
|
| 4 |
|
| 5 |
from ._ops import ops
|
| 6 |
+
from .platforms import current_platform
|
| 7 |
+
|
| 8 |
|
| 9 |
# fp8
|
| 10 |
def scaled_fp8_quant(
|
build/torch26-cxx98-cu126-aarch64-linux/quantization/platforms.py
CHANGED
|
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
|
|
| 27 |
class Platform(ABC):
|
| 28 |
simple_compile_backend: str = "inductor"
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
@classmethod
|
| 31 |
@abstractmethod
|
| 32 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
|
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
|
|
| 51 |
|
| 52 |
|
| 53 |
class RocmPlatform(Platform):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
@classmethod
|
| 55 |
@lru_cache(maxsize=8)
|
| 56 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|
|
|
|
| 27 |
class Platform(ABC):
|
| 28 |
simple_compile_backend: str = "inductor"
|
| 29 |
|
| 30 |
+
@classmethod
|
| 31 |
+
def fp8_dtype(cls) -> torch.dtype:
|
| 32 |
+
"""
|
| 33 |
+
Returns the preferred FP8 type on the current platform.
|
| 34 |
+
|
| 35 |
+
See the documentation for is_fp8_fnuz for details.
|
| 36 |
+
"""
|
| 37 |
+
return torch.float8_e4m3fn
|
| 38 |
+
|
| 39 |
+
@classmethod
|
| 40 |
+
def is_fp8_fnuz(cls) -> bool:
|
| 41 |
+
"""
|
| 42 |
+
Returns whether the preferred FP8 type is FNUZ on the current platform.
|
| 43 |
+
|
| 44 |
+
There are two representations of FP8, OCP FP8 and FNUZ FP8.
|
| 45 |
+
The OCP specification can be found at https://tinyurl.com/b7jvwpft.
|
| 46 |
+
The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
|
| 47 |
+
|
| 48 |
+
AMD's MI300 and MI325 have native hardware support for FNUZ. All other
|
| 49 |
+
hardware has converged on the OCP FP8 standard.
|
| 50 |
+
"""
|
| 51 |
+
return False
|
| 52 |
+
|
| 53 |
@classmethod
|
| 54 |
@abstractmethod
|
| 55 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
|
|
|
| 74 |
|
| 75 |
|
| 76 |
class RocmPlatform(Platform):
|
| 77 |
+
@classmethod
|
| 78 |
+
def fp8_dtype(cls) -> torch.dtype:
|
| 79 |
+
if cls.is_fp8_fnuz():
|
| 80 |
+
return torch.float8_e4m3fnuz
|
| 81 |
+
else:
|
| 82 |
+
return torch.float8_e4m3fn
|
| 83 |
+
|
| 84 |
+
@classmethod
|
| 85 |
+
def is_fp8_fnuz(cls) -> bool:
|
| 86 |
+
# only device 0 is checked, this assumes MI300 platforms are homogeneous
|
| 87 |
+
return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
|
| 88 |
+
|
| 89 |
@classmethod
|
| 90 |
@lru_cache(maxsize=8)
|
| 91 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|
build/torch27-cxx11-cu126-aarch64-linux/quantization/__init__.py
CHANGED
|
@@ -19,6 +19,11 @@ from .scalar_type import (
|
|
| 19 |
)
|
| 20 |
from ._ops import ops
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
__all__ = [
|
| 24 |
"ScalarType",
|
|
@@ -32,7 +37,11 @@ __all__ = [
|
|
| 32 |
"gptq_marlin_repack",
|
| 33 |
"marlin_gemm",
|
| 34 |
"marlin_qqq_gemm",
|
|
|
|
|
|
|
|
|
|
| 35 |
"ops",
|
|
|
|
| 36 |
"scalar_types",
|
| 37 |
"scaled_fp8_quant",
|
| 38 |
"scaled_int8_quant",
|
|
|
|
| 19 |
)
|
| 20 |
from ._ops import ops
|
| 21 |
|
| 22 |
+
from .utils import marlin_utils
|
| 23 |
+
from .utils import marlin_utils_fp4
|
| 24 |
+
from .utils import marlin_utils_fp8
|
| 25 |
+
from .utils import quant_utils
|
| 26 |
+
|
| 27 |
|
| 28 |
__all__ = [
|
| 29 |
"ScalarType",
|
|
|
|
| 37 |
"gptq_marlin_repack",
|
| 38 |
"marlin_gemm",
|
| 39 |
"marlin_qqq_gemm",
|
| 40 |
+
"marlin_utils",
|
| 41 |
+
"marlin_utils_fp4",
|
| 42 |
+
"marlin_utils_fp8",
|
| 43 |
"ops",
|
| 44 |
+
"quant_utils",
|
| 45 |
"scalar_types",
|
| 46 |
"scaled_fp8_quant",
|
| 47 |
"scaled_int8_quant",
|
build/torch27-cxx11-cu126-aarch64-linux/quantization/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _quantization_82ffd1f
|
| 3 |
+
ops = torch.ops._quantization_82ffd1f
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_quantization_82ffd1f::{op_name}"
|
build/torch27-cxx11-cu126-aarch64-linux/quantization/{_quantization_9035540.abi3.so → _quantization_82ffd1f.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ef0e68ff25982049ce0b6af570f6546c8f62a49e373397d352f89376c1805de4
|
| 3 |
+
size 159934080
|
build/torch27-cxx11-cu126-aarch64-linux/quantization/compressed_tensors.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
-
from typing import Optional,
|
| 2 |
|
| 3 |
import torch
|
| 4 |
|
| 5 |
from ._ops import ops
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# fp8
|
| 8 |
def scaled_fp8_quant(
|
|
|
|
| 1 |
+
from typing import Optional, Union
|
| 2 |
|
| 3 |
import torch
|
| 4 |
|
| 5 |
from ._ops import ops
|
| 6 |
+
from .platforms import current_platform
|
| 7 |
+
|
| 8 |
|
| 9 |
# fp8
|
| 10 |
def scaled_fp8_quant(
|
build/torch27-cxx11-cu126-aarch64-linux/quantization/platforms.py
CHANGED
|
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
|
|
| 27 |
class Platform(ABC):
|
| 28 |
simple_compile_backend: str = "inductor"
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
@classmethod
|
| 31 |
@abstractmethod
|
| 32 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
|
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
|
|
| 51 |
|
| 52 |
|
| 53 |
class RocmPlatform(Platform):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
@classmethod
|
| 55 |
@lru_cache(maxsize=8)
|
| 56 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|
|
|
|
| 27 |
class Platform(ABC):
|
| 28 |
simple_compile_backend: str = "inductor"
|
| 29 |
|
| 30 |
+
@classmethod
|
| 31 |
+
def fp8_dtype(cls) -> torch.dtype:
|
| 32 |
+
"""
|
| 33 |
+
Returns the preferred FP8 type on the current platform.
|
| 34 |
+
|
| 35 |
+
See the documentation for is_fp8_fnuz for details.
|
| 36 |
+
"""
|
| 37 |
+
return torch.float8_e4m3fn
|
| 38 |
+
|
| 39 |
+
@classmethod
|
| 40 |
+
def is_fp8_fnuz(cls) -> bool:
|
| 41 |
+
"""
|
| 42 |
+
Returns whether the preferred FP8 type is FNUZ on the current platform.
|
| 43 |
+
|
| 44 |
+
There are two representations of FP8, OCP FP8 and FNUZ FP8.
|
| 45 |
+
The OCP specification can be found at https://tinyurl.com/b7jvwpft.
|
| 46 |
+
The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
|
| 47 |
+
|
| 48 |
+
AMD's MI300 and MI325 have native hardware support for FNUZ. All other
|
| 49 |
+
hardware has converged on the OCP FP8 standard.
|
| 50 |
+
"""
|
| 51 |
+
return False
|
| 52 |
+
|
| 53 |
@classmethod
|
| 54 |
@abstractmethod
|
| 55 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
|
|
|
| 74 |
|
| 75 |
|
| 76 |
class RocmPlatform(Platform):
|
| 77 |
+
@classmethod
|
| 78 |
+
def fp8_dtype(cls) -> torch.dtype:
|
| 79 |
+
if cls.is_fp8_fnuz():
|
| 80 |
+
return torch.float8_e4m3fnuz
|
| 81 |
+
else:
|
| 82 |
+
return torch.float8_e4m3fn
|
| 83 |
+
|
| 84 |
+
@classmethod
|
| 85 |
+
def is_fp8_fnuz(cls) -> bool:
|
| 86 |
+
# only device 0 is checked, this assumes MI300 platforms are homogeneous
|
| 87 |
+
return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
|
| 88 |
+
|
| 89 |
@classmethod
|
| 90 |
@lru_cache(maxsize=8)
|
| 91 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|
build/torch27-cxx11-cu128-aarch64-linux/quantization/__init__.py
CHANGED
|
@@ -19,6 +19,11 @@ from .scalar_type import (
|
|
| 19 |
)
|
| 20 |
from ._ops import ops
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
__all__ = [
|
| 24 |
"ScalarType",
|
|
@@ -32,7 +37,11 @@ __all__ = [
|
|
| 32 |
"gptq_marlin_repack",
|
| 33 |
"marlin_gemm",
|
| 34 |
"marlin_qqq_gemm",
|
|
|
|
|
|
|
|
|
|
| 35 |
"ops",
|
|
|
|
| 36 |
"scalar_types",
|
| 37 |
"scaled_fp8_quant",
|
| 38 |
"scaled_int8_quant",
|
|
|
|
| 19 |
)
|
| 20 |
from ._ops import ops
|
| 21 |
|
| 22 |
+
from .utils import marlin_utils
|
| 23 |
+
from .utils import marlin_utils_fp4
|
| 24 |
+
from .utils import marlin_utils_fp8
|
| 25 |
+
from .utils import quant_utils
|
| 26 |
+
|
| 27 |
|
| 28 |
__all__ = [
|
| 29 |
"ScalarType",
|
|
|
|
| 37 |
"gptq_marlin_repack",
|
| 38 |
"marlin_gemm",
|
| 39 |
"marlin_qqq_gemm",
|
| 40 |
+
"marlin_utils",
|
| 41 |
+
"marlin_utils_fp4",
|
| 42 |
+
"marlin_utils_fp8",
|
| 43 |
"ops",
|
| 44 |
+
"quant_utils",
|
| 45 |
"scalar_types",
|
| 46 |
"scaled_fp8_quant",
|
| 47 |
"scaled_int8_quant",
|
build/torch27-cxx11-cu128-aarch64-linux/quantization/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _quantization_82ffd1f
|
| 3 |
+
ops = torch.ops._quantization_82ffd1f
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_quantization_82ffd1f::{op_name}"
|
build/torch27-cxx11-cu128-aarch64-linux/quantization/{_quantization_9035540.abi3.so → _quantization_82ffd1f.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7c8d85c6222df8ff6de82adbad94502fdc5c1910dbaa367034c8975c4f85244a
|
| 3 |
+
size 296561256
|
build/torch27-cxx11-cu128-aarch64-linux/quantization/compressed_tensors.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
-
from typing import Optional,
|
| 2 |
|
| 3 |
import torch
|
| 4 |
|
| 5 |
from ._ops import ops
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# fp8
|
| 8 |
def scaled_fp8_quant(
|
|
|
|
| 1 |
+
from typing import Optional, Union
|
| 2 |
|
| 3 |
import torch
|
| 4 |
|
| 5 |
from ._ops import ops
|
| 6 |
+
from .platforms import current_platform
|
| 7 |
+
|
| 8 |
|
| 9 |
# fp8
|
| 10 |
def scaled_fp8_quant(
|
build/torch27-cxx11-cu128-aarch64-linux/quantization/platforms.py
CHANGED
|
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
|
|
| 27 |
class Platform(ABC):
|
| 28 |
simple_compile_backend: str = "inductor"
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
@classmethod
|
| 31 |
@abstractmethod
|
| 32 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
|
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
|
|
| 51 |
|
| 52 |
|
| 53 |
class RocmPlatform(Platform):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
@classmethod
|
| 55 |
@lru_cache(maxsize=8)
|
| 56 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|
|
|
|
| 27 |
class Platform(ABC):
|
| 28 |
simple_compile_backend: str = "inductor"
|
| 29 |
|
| 30 |
+
@classmethod
|
| 31 |
+
def fp8_dtype(cls) -> torch.dtype:
|
| 32 |
+
"""
|
| 33 |
+
Returns the preferred FP8 type on the current platform.
|
| 34 |
+
|
| 35 |
+
See the documentation for is_fp8_fnuz for details.
|
| 36 |
+
"""
|
| 37 |
+
return torch.float8_e4m3fn
|
| 38 |
+
|
| 39 |
+
@classmethod
|
| 40 |
+
def is_fp8_fnuz(cls) -> bool:
|
| 41 |
+
"""
|
| 42 |
+
Returns whether the preferred FP8 type is FNUZ on the current platform.
|
| 43 |
+
|
| 44 |
+
There are two representations of FP8, OCP FP8 and FNUZ FP8.
|
| 45 |
+
The OCP specification can be found at https://tinyurl.com/b7jvwpft.
|
| 46 |
+
The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
|
| 47 |
+
|
| 48 |
+
AMD's MI300 and MI325 have native hardware support for FNUZ. All other
|
| 49 |
+
hardware has converged on the OCP FP8 standard.
|
| 50 |
+
"""
|
| 51 |
+
return False
|
| 52 |
+
|
| 53 |
@classmethod
|
| 54 |
@abstractmethod
|
| 55 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
|
|
|
| 74 |
|
| 75 |
|
| 76 |
class RocmPlatform(Platform):
|
| 77 |
+
@classmethod
|
| 78 |
+
def fp8_dtype(cls) -> torch.dtype:
|
| 79 |
+
if cls.is_fp8_fnuz():
|
| 80 |
+
return torch.float8_e4m3fnuz
|
| 81 |
+
else:
|
| 82 |
+
return torch.float8_e4m3fn
|
| 83 |
+
|
| 84 |
+
@classmethod
|
| 85 |
+
def is_fp8_fnuz(cls) -> bool:
|
| 86 |
+
# only device 0 is checked, this assumes MI300 platforms are homogeneous
|
| 87 |
+
return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
|
| 88 |
+
|
| 89 |
@classmethod
|
| 90 |
@lru_cache(maxsize=8)
|
| 91 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|