nm-research commited on
Commit
2c038bb
·
verified ·
1 Parent(s): 67dd2f4

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +204 -0
README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - w4a16
4
+ - int4
5
+ - vllm
6
+ license: apache-2.0
7
+ license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
8
+ language:
9
+ - en
10
+ base_model: ibm-granite/granite-3.1-8b-instruct
11
+ library_name: transformers
12
+ ---
13
+
14
+ # granite-3.1-8b-instruct-quantized.w4a16
15
+
16
+ ## Model Overview
17
+ - **Model Architecture:** granite-3.1-8b-instruct
18
+ - **Input:** Text
19
+ - **Output:** Text
20
+ - **Model Optimizations:**
21
+ - **Weight quantization:** INT4
22
+ - **Activation quantization:** INT4
23
+ - **Release Date:** 1/8/2025
24
+ - **Version:** 1.0
25
+ - **Model Developers:** Neural Magic
26
+
27
+ Quantized version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct).
28
+ It achieves an average score of xxxx on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves xxxx.
29
+
30
+ ### Model Optimizations
31
+
32
+ This model was obtained by quantizing the weights of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) to INT4 data type, ready for inference with vLLM >= 0.5.2.
33
+ This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. Only the weights of the linear operators within transformers blocks are quantized.
34
+
35
+ ## Deployment
36
+
37
+ ### Use with vLLM
38
+
39
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
40
+
41
+ ```python
42
+ from transformers import AutoTokenizer
43
+ from vllm import LLM, SamplingParams
44
+
45
+ max_model_len, tp_size = 4096, 1
46
+ model_name = "neuralmagic-ent/granite-3.1-8b-instruct-quantized.w4a16"
47
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
48
+ llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
49
+ sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
50
+
51
+ messages_list = [
52
+ [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
53
+ ]
54
+
55
+ prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
56
+
57
+ outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
58
+
59
+ generated_text = [output.outputs[0].text for output in outputs]
60
+ print(generated_text)
61
+ ```
62
+
63
+ vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
64
+
65
+ ## Creation
66
+
67
+ This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
68
+
69
+
70
+ ```bash
71
+ python quantize.py --model_path ibm-granite/granite-3.1-8b-instruct --quant_path "output_dir/granite-3.1-8b-instruct-quantized.w4a16" --calib_size 1024 --dampening_frac 0.01 --observer mse
72
+ ```
73
+
74
+
75
+ ```python
76
+ from datasets import load_dataset
77
+ from transformers import AutoTokenizer
78
+ from llmcompressor.modifiers.quantization import GPTQModifier
79
+ from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot, apply
80
+ import argparse
81
+ from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy
82
+
83
+
84
+ parser = argparse.ArgumentParser()
85
+ parser.add_argument('--model_path', type=str)
86
+ parser.add_argument('--quant_path', type=str)
87
+ parser.add_argument('--calib_size', type=int, default=256)
88
+ parser.add_argument('--dampening_frac', type=float, default=0.1)
89
+ parser.add_argument('--observer', type=str, default="minmax")
90
+ args = parser.parse_args()
91
+
92
+ model = SparseAutoModelForCausalLM.from_pretrained(
93
+ args.model_path,
94
+ device_map="auto",
95
+ torch_dtype="auto",
96
+ use_cache=False,
97
+ trust_remote_code=True,
98
+ )
99
+ tokenizer = AutoTokenizer.from_pretrained(args.model_path)
100
+
101
+
102
+ NUM_CALIBRATION_SAMPLES = args.calib_size
103
+ DATASET_ID = "neuralmagic/LLM_compression_calibration"
104
+ DATASET_SPLIT = "train"
105
+ ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
106
+ ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
107
+
108
+ def preprocess(example):
109
+ concat_txt = example["instruction"] + "\n" + example["output"]
110
+ return {"text": concat_txt}
111
+
112
+ ds = ds.map(preprocess)
113
+
114
+ def tokenize(sample):
115
+ return tokenizer(
116
+ sample["text"],
117
+ padding=False,
118
+ truncation=False,
119
+ add_special_tokens=True,
120
+ )
121
+
122
+
123
+ ds = ds.map(tokenize, remove_columns=ds.column_names)
124
+
125
+ recipe = [
126
+ GPTQModifier(
127
+ targets=["Linear"],
128
+ ignore=["lm_head"],
129
+ scheme="w4a16",
130
+ dampening_frac=args.dampening_frac,
131
+ observer=args.observer,
132
+ )
133
+ ]
134
+ oneshot(
135
+ model=model,
136
+ dataset=ds,
137
+ recipe=recipe,
138
+ num_calibration_samples=args.calib_size,
139
+ max_seq_length=8196,
140
+ )
141
+
142
+ # Save to disk compressed.
143
+ model.save_pretrained(SAVE_DIR, save_compressed=True)
144
+ tokenizer.save_pretrained(SAVE_DIR)
145
+ ```
146
+
147
+ ## Evaluation
148
+
149
+ The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and on [HumanEval](https://github.com/neuralmagic/evalplus), using the following commands:
150
+
151
+ OpenLLM Leaderboard V1:
152
+ ```
153
+ lm_eval \
154
+ --model vllm \
155
+ --model_args pretrained="neuralmagic-ent/granite-3.1-8b-instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
156
+ --tasks openllm \
157
+ --write_out \
158
+ --batch_size auto \
159
+ --output_path output_dir \
160
+ --show_config
161
+ ```
162
+
163
+ #### HumanEval
164
+ ##### Generation
165
+ ```
166
+ python3 codegen/generate.py \
167
+ --model neuralmagic-ent/granite-3.1-8b-instruct-quantized.w4a16 \
168
+ --bs 16 \
169
+ --temperature 0.2 \
170
+ --n_samples 50 \
171
+ --root "." \
172
+ --dataset humaneval
173
+ ```
174
+ ##### Sanitization
175
+ ```
176
+ python3 evalplus/sanitize.py \
177
+ humaneval/neuralmagic-ent--granite-3.1-8b-instruct-quantized.w4a16_vllm_temp_0.2
178
+ ```
179
+ ##### Evaluation
180
+ ```
181
+ evalplus.evaluate \
182
+ --dataset humaneval \
183
+ --samples humaneval/neuralmagic-ent--granite-3.1-8b-instruct-quantized.w4a16_vllm_temp_0.2-sanitized
184
+ ```
185
+
186
+ ### Accuracy
187
+
188
+ #### OpenLLM Leaderboard V1 evaluation scores
189
+
190
+ | Metric | ibm-granite/granite-3.1-8b-instruct | neuralmagic-ent/granite-3.1-8b-instruct-quantized.w4a16 |
191
+ |-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
192
+ | ARC-Challenge (Acc-Norm, 25-shot) | | |
193
+ | GSM8K (Strict-Match, 5-shot) | | |
194
+ | HellaSwag (Acc-Norm, 10-shot) | | |
195
+ | MMLU (Acc, 5-shot) | | |
196
+ | TruthfulQA (MC2, 0-shot) | | |
197
+ | Winogrande (Acc, 5-shot) | | |
198
+ | **Average Score** | **** | **** |
199
+ | **Recovery** | **100.00** | **** |
200
+
201
+ #### HumanEval pass@1 scores
202
+
203
+
204
+