Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -1,3 +1,216 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: vllm
|
3 |
+
license: apache-2.0
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
- fr
|
7 |
+
- es
|
8 |
+
- it
|
9 |
+
- pt
|
10 |
+
- zh
|
11 |
+
- ar
|
12 |
+
- ru
|
13 |
+
base_model:
|
14 |
+
- HuggingFaceTB/SmolLM3-3B
|
15 |
+
tags:
|
16 |
+
- neuralmagic
|
17 |
+
- redhat
|
18 |
+
- llmcompressor
|
19 |
+
- fp8
|
20 |
+
- quantized
|
21 |
+
---
|
22 |
+
|
23 |
+
## Model Overview
|
24 |
+
- **Model Architecture:** SmolLM3-3B
|
25 |
+
- **Input:** Text
|
26 |
+
- **Output:** Text
|
27 |
+
- **Model Optimizations:**
|
28 |
+
- **Weight quantization:** FP8
|
29 |
+
- **Activation quantization:** FP8
|
30 |
+
- **Release Date:** 07/28/2025
|
31 |
+
- **Version:** 1.0
|
32 |
+
- **License(s):** Apache-2.0
|
33 |
+
- **Model Developers:** RedHat (Neural Magic)
|
34 |
+
|
35 |
+
### Model Optimizations
|
36 |
+
|
37 |
+
This model was obtained by quantizing activation and weights of [SmolLM3-3B](https://huggingface.co/HuggingFaceTB/SmolLM3-3B) to FP8 data type.
|
38 |
+
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
|
39 |
+
Weight quantization also reduces disk size requirements by approximately 50%.
|
40 |
+
|
41 |
+
Only weights and activations of the linear operators within transformers blocks are quantized.
|
42 |
+
Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme.
|
43 |
+
The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization.
|
44 |
+
|
45 |
+
## Deployment
|
46 |
+
|
47 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
48 |
+
|
49 |
+
```python
|
50 |
+
from vllm import LLM, SamplingParams
|
51 |
+
from transformers import AutoTokenizer
|
52 |
+
|
53 |
+
model_id = "RedHatAI/SmolLM3-3B-FP8-dynamic"
|
54 |
+
number_gpus = 1
|
55 |
+
|
56 |
+
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
|
57 |
+
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
59 |
+
|
60 |
+
messages = [
|
61 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
62 |
+
{"role": "user", "content": "Who are you?"},
|
63 |
+
]
|
64 |
+
|
65 |
+
prompts = tokenizer.apply_chat_template(messages, tokenize=False)
|
66 |
+
|
67 |
+
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
|
68 |
+
|
69 |
+
outputs = llm.generate(prompts, sampling_params)
|
70 |
+
|
71 |
+
generated_text = outputs[0].outputs[0].text
|
72 |
+
print(generated_text)
|
73 |
+
```
|
74 |
+
|
75 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
76 |
+
|
77 |
+
|
78 |
+
## Creation
|
79 |
+
|
80 |
+
<details>
|
81 |
+
<summary>Creation details</summary>
|
82 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
83 |
+
|
84 |
+
|
85 |
+
```python
|
86 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
87 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
88 |
+
from llmcompressor.transformers import oneshot
|
89 |
+
|
90 |
+
# Load model
|
91 |
+
model_stub = "HuggingFaceTB/SmolLM3-3B"
|
92 |
+
model_name = model_stub.split("/")[-1]
|
93 |
+
|
94 |
+
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
95 |
+
|
96 |
+
model = AutoModelForCausalLM.from_pretrained(
|
97 |
+
model_stub,
|
98 |
+
device_map="auto",
|
99 |
+
torch_dtype="auto",
|
100 |
+
)
|
101 |
+
|
102 |
+
# Configure the quantization algorithm and scheme
|
103 |
+
recipe = QuantizationModifier(
|
104 |
+
targets="Linear",
|
105 |
+
scheme="FP8_dynamic",
|
106 |
+
ignore=["lm_head"],
|
107 |
+
)
|
108 |
+
|
109 |
+
# Apply quantization
|
110 |
+
oneshot(
|
111 |
+
model=model,
|
112 |
+
recipe=recipe,
|
113 |
+
)
|
114 |
+
|
115 |
+
# Save to disk in compressed-tensors format
|
116 |
+
save_path = model_name + "-FP8-dynamic"
|
117 |
+
model.save_pretrained(save_path)
|
118 |
+
tokenizer.save_pretrained(save_path)
|
119 |
+
print(f"Model and tokenizer saved to: {save_path}")
|
120 |
+
```
|
121 |
+
</details>
|
122 |
+
|
123 |
+
## Evaluation
|
124 |
+
|
125 |
+
This model was evaluated on the well-known reasoning tasks: AIME24, Math-500, and GPQA-Diamond.
|
126 |
+
In all cases, model outputs were generated with the [vLLM](https://docs.vllm.ai/en/stable/) engine, and evals are collected through [LightEval](https://github.com/huggingface/lighteval) library.
|
127 |
+
|
128 |
+
|
129 |
+
<details>
|
130 |
+
<summary>Evaluation details</summary>
|
131 |
+
|
132 |
+
```
|
133 |
+
export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
134 |
+
export MODEL="RedHatAI/SmolLM3-3B-FP8-dynamic"
|
135 |
+
export MODEL_ARGS="model_name=$MODEL,dtype=auto,max_model_length=65536,gpu_memory_utilization=0.9,tensor_parallel_size=1,add_special_tokens=False,generation_parameters={max_new_tokens:32768,temperature:0.6,top_p:0.95}"
|
136 |
+
|
137 |
+
export TASK=aime24 # {aime24, math_500, gpqa:diamond}
|
138 |
+
|
139 |
+
lighteval vllm $MODEL_ARGS "lighteval|${TASK}|0|0" \
|
140 |
+
--use-chat-template \
|
141 |
+
--output-dir out_dir
|
142 |
+
```
|
143 |
+
</details>
|
144 |
+
|
145 |
+
### Accuracy
|
146 |
+
|
147 |
+
<table>
|
148 |
+
<tr>
|
149 |
+
<th>Category
|
150 |
+
</th>
|
151 |
+
<th>Benchmark
|
152 |
+
</th>
|
153 |
+
<th>HuggingFaceTB/SmolLM3-3B
|
154 |
+
</th>
|
155 |
+
<th>RedHatAI/SmolLM3-3B-FP8-dynamic<br>(this model)
|
156 |
+
</th>
|
157 |
+
<th>Recovery
|
158 |
+
</th>
|
159 |
+
</tr>
|
160 |
+
<tr>
|
161 |
+
<td rowspan="8" ><strong>Reasoning</strong>
|
162 |
+
</td>
|
163 |
+
<td>AIME24 (pass@1:64)
|
164 |
+
</td>
|
165 |
+
<td>45.31
|
166 |
+
</td>
|
167 |
+
<td>47.50
|
168 |
+
</td>
|
169 |
+
<td>104.83%
|
170 |
+
</td>
|
171 |
+
</tr>
|
172 |
+
<tr>
|
173 |
+
<td>MATH-500 (pass@1:4)
|
174 |
+
</td>
|
175 |
+
<td>89.30
|
176 |
+
</td>
|
177 |
+
<td>88.30
|
178 |
+
</td>
|
179 |
+
<td>98.88%
|
180 |
+
</td>
|
181 |
+
</tr>
|
182 |
+
<tr>
|
183 |
+
<td>GPQA-Diamond (pass@1:8)
|
184 |
+
</td>
|
185 |
+
<td>41.22
|
186 |
+
</td>
|
187 |
+
<td>40.91
|
188 |
+
</td>
|
189 |
+
<td>99.25%
|
190 |
+
</td>
|
191 |
+
</tr>
|
192 |
+
<tr>
|
193 |
+
<td>GSM-8K (CoT, 8-shot, strict-match)
|
194 |
+
</td>
|
195 |
+
<td>94.16
|
196 |
+
</td>
|
197 |
+
<td>94.92
|
198 |
+
</td>
|
199 |
+
<td>100.8%
|
200 |
+
</td>
|
201 |
+
</tr>
|
202 |
+
<tr>
|
203 |
+
<td><strong>Average</strong>
|
204 |
+
</td>
|
205 |
+
<td><strong>58.61</strong>
|
206 |
+
</td>
|
207 |
+
<td><strong>58.90</strong>
|
208 |
+
</td>
|
209 |
+
<td><strong>100.5%</strong>
|
210 |
+
</td>
|
211 |
+
</tr>
|
212 |
+
<tr>
|
213 |
+
</table>
|
214 |
+
|
215 |
+
|
216 |
+
|