Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- fp8
|
| 4 |
+
---
|
| 5 |
+
Quantized using the script below:
|
| 6 |
+
|
| 7 |
+
Command:
|
| 8 |
+
```bash
|
| 9 |
+
python quantize.py --model-id mistralai/Mixtral-8x7B-Instruct-v0.1 --save-dir Mixtral-8x7B-Instruct-v0.1-FP8 --num-samples 512
|
| 10 |
+
```
|
| 11 |
+
|
| 12 |
+
Script:
|
| 13 |
+
```python
|
| 14 |
+
import argparse
|
| 15 |
+
import gc
|
| 16 |
+
import re
|
| 17 |
+
from typing import Tuple
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
import torch.functional as F
|
| 21 |
+
import transformers
|
| 22 |
+
from datasets import load_dataset
|
| 23 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# HACK: override the dtype_byte_size function in transformers to support float8 types
|
| 27 |
+
def new_dtype_byte_size(dtype):
|
| 28 |
+
if dtype == torch.bool:
|
| 29 |
+
return 1 / 8
|
| 30 |
+
bit_search = re.search(r"[^\d](\d+)_?", str(dtype))
|
| 31 |
+
if bit_search is None:
|
| 32 |
+
raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
|
| 33 |
+
bit_size = int(bit_search.groups()[0])
|
| 34 |
+
return bit_size // 8
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
transformers.modeling_utils.dtype_byte_size = new_dtype_byte_size
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def cleanup_memory():
|
| 41 |
+
gc.collect()
|
| 42 |
+
torch.cuda.empty_cache()
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def per_tensor_quantize(tensor: torch.Tensor) -> Tuple[torch.Tensor, float]:
|
| 46 |
+
"""Quantize a tensor using per-tensor static scaling factor.
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
tensor: The input tensor.
|
| 50 |
+
"""
|
| 51 |
+
finfo = torch.finfo(torch.float8_e4m3fn)
|
| 52 |
+
# Calculate the scale as dtype max divided by absmax.
|
| 53 |
+
# Since .abs() creates a new tensor, we use aminmax to get
|
| 54 |
+
# the min and max first and then calculate the absmax.
|
| 55 |
+
if tensor.numel() == 0:
|
| 56 |
+
# Deal with empty tensors (triggered by empty MoE experts)
|
| 57 |
+
min_val, max_val = (
|
| 58 |
+
torch.tensor(0.0, dtype=tensor.dtype),
|
| 59 |
+
torch.tensor(1.0, dtype=tensor.dtype),
|
| 60 |
+
)
|
| 61 |
+
else:
|
| 62 |
+
min_val, max_val = tensor.aminmax()
|
| 63 |
+
amax = min_val.abs().max(max_val.abs())
|
| 64 |
+
scale = finfo.max / amax.clamp(min=1e-12)
|
| 65 |
+
# scale and clamp the tensor to bring it to
|
| 66 |
+
# the representative range of float8 data type
|
| 67 |
+
# (as default cast is unsaturated)
|
| 68 |
+
qweight = (tensor * scale).clamp(min=finfo.min, max=finfo.max)
|
| 69 |
+
# Return both float8 data and the inverse scale (as float),
|
| 70 |
+
# as both required as inputs to torch._scaled_mm
|
| 71 |
+
qweight = qweight.to(torch.float8_e4m3fn)
|
| 72 |
+
scale = scale.float().reciprocal()
|
| 73 |
+
return qweight, scale
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def fp8_gemm(A, A_scale, B, B_scale, bias, out_dtype):
|
| 77 |
+
cuda_compute_capability = torch.cuda.get_device_capability()
|
| 78 |
+
if cuda_compute_capability >= (9, 0):
|
| 79 |
+
output, _ = torch._scaled_mm(
|
| 80 |
+
A,
|
| 81 |
+
B.t(),
|
| 82 |
+
out_dtype=out_dtype,
|
| 83 |
+
scale_a=A_scale,
|
| 84 |
+
scale_b=B_scale,
|
| 85 |
+
bias=bias,
|
| 86 |
+
)
|
| 87 |
+
else:
|
| 88 |
+
output = torch.nn.functional.linear(
|
| 89 |
+
A.to(out_dtype) * A_scale,
|
| 90 |
+
B.to(out_dtype) * B_scale.to(out_dtype),
|
| 91 |
+
bias=bias,
|
| 92 |
+
)
|
| 93 |
+
return output
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class FP8StaticLinearQuantizer(torch.nn.Module):
|
| 97 |
+
def __init__(self, qweight, weight_scale):
|
| 98 |
+
super().__init__()
|
| 99 |
+
self.weight = torch.nn.Parameter(qweight, requires_grad=False)
|
| 100 |
+
self.weight_scale = torch.nn.Parameter(weight_scale, requires_grad=False)
|
| 101 |
+
self.act_scale = None
|
| 102 |
+
|
| 103 |
+
def forward(self, x):
|
| 104 |
+
# Dynamically quantize
|
| 105 |
+
qinput, x_act_scale = per_tensor_quantize(x)
|
| 106 |
+
|
| 107 |
+
# Update scale if needed.
|
| 108 |
+
if self.act_scale is None:
|
| 109 |
+
self.act_scale = torch.nn.Parameter(x_act_scale)
|
| 110 |
+
elif x_act_scale > self.act_scale:
|
| 111 |
+
self.act_scale = torch.nn.Parameter(x_act_scale)
|
| 112 |
+
|
| 113 |
+
# Pass quantized to next layer so it has realistic data.
|
| 114 |
+
output = fp8_gemm(
|
| 115 |
+
A=qinput,
|
| 116 |
+
A_scale=self.act_scale,
|
| 117 |
+
B=self.weight,
|
| 118 |
+
B_scale=self.weight_scale,
|
| 119 |
+
bias=None,
|
| 120 |
+
out_dtype=x.dtype,
|
| 121 |
+
)
|
| 122 |
+
return output
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
class FP8StaticLinear(torch.nn.Module):
|
| 126 |
+
def __init__(self, qweight, weight_scale, act_scale=0.0):
|
| 127 |
+
super().__init__()
|
| 128 |
+
self.weight = torch.nn.Parameter(qweight, requires_grad=False)
|
| 129 |
+
self.weight_scale = torch.nn.Parameter(weight_scale, requires_grad=False)
|
| 130 |
+
self.act_scale = torch.nn.Parameter(act_scale, requires_grad=False)
|
| 131 |
+
|
| 132 |
+
def per_tensor_quantize(
|
| 133 |
+
self, tensor: torch.Tensor, inv_scale: float
|
| 134 |
+
) -> torch.Tensor:
|
| 135 |
+
# Scale and clamp the tensor to bring it to
|
| 136 |
+
# the representative range of float8 data type
|
| 137 |
+
# (as default cast is unsaturated)
|
| 138 |
+
finfo = torch.finfo(torch.float8_e4m3fn)
|
| 139 |
+
qweight = (tensor / inv_scale).clamp(min=finfo.min, max=finfo.max)
|
| 140 |
+
return qweight.to(torch.float8_e4m3fn)
|
| 141 |
+
|
| 142 |
+
def forward(self, x):
|
| 143 |
+
qinput = self.per_tensor_quantize(x, inv_scale=self.act_scale)
|
| 144 |
+
output = fp8_gemm(
|
| 145 |
+
A=qinput,
|
| 146 |
+
A_scale=self.act_scale,
|
| 147 |
+
B=self.weight,
|
| 148 |
+
B_scale=self.weight_scale,
|
| 149 |
+
bias=None,
|
| 150 |
+
out_dtype=x.dtype,
|
| 151 |
+
)
|
| 152 |
+
return output
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
class FP8DynamicLinear(torch.nn.Module):
|
| 156 |
+
def __init__(self, qweight, scale):
|
| 157 |
+
super().__init__()
|
| 158 |
+
self.weight = torch.nn.Parameter(qweight, requires_grad=False)
|
| 159 |
+
self.weight_scale = torch.nn.Parameter(scale, requires_grad=False)
|
| 160 |
+
|
| 161 |
+
def forward(self, x):
|
| 162 |
+
qinput, x_scale = per_tensor_quantize(x)
|
| 163 |
+
output = fp8_gemm(
|
| 164 |
+
A=qinput,
|
| 165 |
+
A_scale=x_scale,
|
| 166 |
+
B=self.weight,
|
| 167 |
+
B_scale=self.weight_scale,
|
| 168 |
+
bias=None,
|
| 169 |
+
out_dtype=x.dtype,
|
| 170 |
+
)
|
| 171 |
+
return output
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def replace_module(model, name, new_module):
|
| 175 |
+
if "." in name:
|
| 176 |
+
parent_name = name.rsplit(".", 1)[0]
|
| 177 |
+
child_name = name[len(parent_name) + 1 :]
|
| 178 |
+
parent = model.model.get_submodule(parent_name)
|
| 179 |
+
else:
|
| 180 |
+
parent_name = ""
|
| 181 |
+
parent = model.model
|
| 182 |
+
child_name = name
|
| 183 |
+
setattr(parent, child_name, new_module)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def quantize_weights(model):
|
| 187 |
+
for name, linear in model.model.named_modules():
|
| 188 |
+
if "gate" in name or not isinstance(linear, torch.nn.Linear):
|
| 189 |
+
continue
|
| 190 |
+
quant_weight, quant_scale = per_tensor_quantize(linear.weight)
|
| 191 |
+
quant_linear = FP8DynamicLinear(quant_weight, quant_scale)
|
| 192 |
+
replace_module(model, name, quant_linear)
|
| 193 |
+
del linear
|
| 194 |
+
cleanup_memory()
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def quantize_activations(model, calibration_tokens):
|
| 198 |
+
# Replace layers with quantizer.
|
| 199 |
+
for name, dynamic_quant_linear in model.model.named_modules():
|
| 200 |
+
if "gate" in name or not isinstance(dynamic_quant_linear, FP8DynamicLinear):
|
| 201 |
+
continue
|
| 202 |
+
quantizer = FP8StaticLinearQuantizer(
|
| 203 |
+
dynamic_quant_linear.weight, dynamic_quant_linear.weight_scale
|
| 204 |
+
)
|
| 205 |
+
replace_module(model, name, quantizer)
|
| 206 |
+
del dynamic_quant_linear
|
| 207 |
+
cleanup_memory()
|
| 208 |
+
|
| 209 |
+
# Calibration.
|
| 210 |
+
for row_idx in range(calibration_tokens.shape[0]):
|
| 211 |
+
_ = model(calibration_tokens[row_idx].reshape(1, -1))
|
| 212 |
+
|
| 213 |
+
# Replace quantizer with StaticLayer.
|
| 214 |
+
for name, quantizer in model.model.named_modules():
|
| 215 |
+
if "gate" in name or not isinstance(quantizer, FP8StaticLinearQuantizer):
|
| 216 |
+
continue
|
| 217 |
+
static_proj = FP8StaticLinear(
|
| 218 |
+
quantizer.weight, quantizer.weight_scale, quantizer.act_scale
|
| 219 |
+
)
|
| 220 |
+
replace_module(model, name, static_proj)
|
| 221 |
+
del quantizer
|
| 222 |
+
cleanup_memory()
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def save_quantized_model(model, activation_scheme, save_dir):
|
| 226 |
+
print(f"Saving the model to {save_dir}")
|
| 227 |
+
static_q_dict = {
|
| 228 |
+
"quantization_config": {
|
| 229 |
+
"quant_method": "fp8",
|
| 230 |
+
"activation_scheme": activation_scheme,
|
| 231 |
+
}
|
| 232 |
+
}
|
| 233 |
+
model.config.update(static_q_dict)
|
| 234 |
+
model.save_pretrained(save_dir)
|
| 235 |
+
tokenizer.save_pretrained(save_dir)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
if __name__ == "__main__":
|
| 239 |
+
parser = argparse.ArgumentParser()
|
| 240 |
+
parser.add_argument("--model-id", type=str)
|
| 241 |
+
parser.add_argument("--save-dir", type=str)
|
| 242 |
+
parser.add_argument(
|
| 243 |
+
"--activation-scheme", type=str, default="static", choices=["static", "dynamic"]
|
| 244 |
+
)
|
| 245 |
+
parser.add_argument("--num-samples", type=int, default=512)
|
| 246 |
+
parser.add_argument("--max-seq-len", type=int, default=512)
|
| 247 |
+
args = parser.parse_args()
|
| 248 |
+
|
| 249 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
|
| 250 |
+
sample_input_tokens = tokenizer.apply_chat_template(
|
| 251 |
+
[{"role": "user", "content": "What is your name?"}],
|
| 252 |
+
add_generation_prompt=True,
|
| 253 |
+
return_tensors="pt",
|
| 254 |
+
).to("cuda")
|
| 255 |
+
|
| 256 |
+
ds = load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft")
|
| 257 |
+
ds = ds.shuffle(seed=42).select(range(args.num_samples))
|
| 258 |
+
ds = ds.map(
|
| 259 |
+
lambda batch: {
|
| 260 |
+
"text": tokenizer.apply_chat_template(batch["messages"], tokenize=False)
|
| 261 |
+
}
|
| 262 |
+
)
|
| 263 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 264 |
+
calibration_tokens = tokenizer(
|
| 265 |
+
ds["text"],
|
| 266 |
+
return_tensors="pt",
|
| 267 |
+
truncation=True,
|
| 268 |
+
padding="max_length",
|
| 269 |
+
max_length=args.max_seq_len,
|
| 270 |
+
add_special_tokens=False,
|
| 271 |
+
).input_ids.to("cuda")
|
| 272 |
+
print("Calibration tokens:", calibration_tokens.shape)
|
| 273 |
+
|
| 274 |
+
# Load and test the model
|
| 275 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 276 |
+
args.model_id, torch_dtype="auto", device_map="auto"
|
| 277 |
+
)
|
| 278 |
+
print(model)
|
| 279 |
+
output = model.generate(input_ids=sample_input_tokens, max_new_tokens=20)
|
| 280 |
+
print("ORIGINAL:\n", tokenizer.decode(output[0]), "\n\n")
|
| 281 |
+
|
| 282 |
+
# Quantize weights.
|
| 283 |
+
quantize_weights(model)
|
| 284 |
+
print(model)
|
| 285 |
+
output = model.generate(input_ids=sample_input_tokens, max_new_tokens=20)
|
| 286 |
+
print("WEIGHT QUANT:\n", tokenizer.decode(output[0]), "\n\n")
|
| 287 |
+
|
| 288 |
+
if args.activation_scheme in "dynamic":
|
| 289 |
+
print("Exporting model with static weights and dynamic activations")
|
| 290 |
+
save_quantized_model(model, args.activation_scheme, args.save_dir)
|
| 291 |
+
else:
|
| 292 |
+
assert args.activation_scheme in "static"
|
| 293 |
+
# Quantize activations.
|
| 294 |
+
quantize_activations(model, calibration_tokens=calibration_tokens)
|
| 295 |
+
output = model.generate(input_ids=sample_input_tokens, max_new_tokens=20)
|
| 296 |
+
print("ACT QUANT:\n", tokenizer.decode(output[0]), "\n\n")
|
| 297 |
+
|
| 298 |
+
print("Exporting model with static weights and static activations")
|
| 299 |
+
save_quantized_model(model, args.activation_scheme, args.save_dir)
|
| 300 |
+
```
|