Merge branch 'main' of https://huggingface.co/RedHatAI/DeepSeek-R1-0528-quantized.w4a16
Browse files
README.md
CHANGED
@@ -1,4 +1,62 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
- unquantized baseline on GSM8k
|
4 |
```bash
|
@@ -14,4 +72,4 @@
|
|
14 |
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|
15 |
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.9560|± |0.0056|
|
16 |
| | |strict-match | 5|exact_match|↑ |0.9553|± |0.0057|
|
17 |
-
```
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: vllm
|
4 |
+
base_model:
|
5 |
+
- deepseek-ai/DeepSeek-R1-0528
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
tags:
|
8 |
+
- deepseek
|
9 |
+
- neuralmagic
|
10 |
+
- redhat
|
11 |
+
- llmcompressor
|
12 |
+
- quantized
|
13 |
+
- INT4
|
14 |
+
- GPTQ
|
15 |
+
---
|
16 |
+
|
17 |
+
# DeepSeek-R1-0528-quantized.w4a16
|
18 |
+
|
19 |
+
## Model Overview
|
20 |
+
- **Model Architecture:** DeepseekV3ForCausalLM
|
21 |
+
- **Input:** Text
|
22 |
+
- **Output:** Text
|
23 |
+
- **Model Optimizations:**
|
24 |
+
- **Activation quantization:** None
|
25 |
+
- **Weight quantization:** INT4
|
26 |
+
- **Release Date:** 05/30/2025
|
27 |
+
- **Version:** 1.0
|
28 |
+
- **Model Developers:** Red Hat (Neural Magic)
|
29 |
+
|
30 |
+
|
31 |
+
### Model Optimizations
|
32 |
+
|
33 |
+
This model was obtained by quantizing weights of [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) to INT4 data type.
|
34 |
+
This optimization reduces the number of bits used to represent weights from 8 to 4, reducing GPU memory requirements (by approximately 50%).
|
35 |
+
Weight quantization also reduces disk size requirements by approximately 50%.
|
36 |
+
|
37 |
+
|
38 |
+
## Deployment
|
39 |
+
|
40 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
41 |
+
|
42 |
+
```python
|
43 |
+
from vllm import LLM, SamplingParams
|
44 |
+
from transformers import AutoTokenizer
|
45 |
+
model_id = "RedHatAI/DeepSeek-R1-0528-quantized.w4a16"
|
46 |
+
number_gpus = 8
|
47 |
+
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, max_tokens=256)
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
49 |
+
prompt = "Give me a short introduction to large language model."
|
50 |
+
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
|
51 |
+
outputs = llm.generate(prompt, sampling_params)
|
52 |
+
generated_text = outputs[0].outputs[0].text
|
53 |
+
print(generated_text)
|
54 |
+
```
|
55 |
+
|
56 |
+
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
57 |
+
|
58 |
+
|
59 |
+
## Evaluation (More evals coming soon)
|
60 |
|
61 |
- unquantized baseline on GSM8k
|
62 |
```bash
|
|
|
72 |
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|
73 |
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.9560|± |0.0056|
|
74 |
| | |strict-match | 5|exact_match|↑ |0.9553|± |0.0057|
|
75 |
+
```
|