File size: 7,958 Bytes
259fdb8
753b044
 
259fdb8
 
a49057b
 
753b044
a49057b
 
 
 
 
 
 
753b044
 
 
 
 
 
 
 
 
 
 
503c878
 
 
259fdb8
a49057b
dba8038
 
 
 
 
 
 
 
e9b0930
 
 
 
 
 
 
 
 
 
dba8038
e9b0930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bbf1ff
b0365f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9b0930
f2f066b
 
 
 
 
 
 
cce668c
 
 
877279e
cce668c
 
 
cb21039
cce668c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
---
language:
- en
base_model:
- deepseek-ai/DeepSeek-R1-0528
pipeline_tag: text-generation
tags:
- deepseek_v3
- deepseek
- neuralmagic
- redhat
- llmcompressor
- quantized
- INT4
- GPTQ
- conversational
- compressed-tensors
license: mit
license_name: mit
name: RedHatAI/DeepSeek-R1-0528-quantized.w4a16
description: This model was obtained by quantizing weights of DeepSeek-R1-0528 to INT4 data type.
readme: https://huggingface.co/RedHatAI/DeepSeek-R1-0528-quantized.w4a16/main/README.md
tasks:
- text-to-text
provider: DeepSeek
license_link: https://choosealicense.com/licenses/mit/
validated_on:
  - RHOAI 2.24
  - RHAIIS 3.2.1
---

<h1 style="display: flex; align-items: center; gap: 10px; margin: 0;">
  DeepSeek-R1-0528-quantized.w4a16
  <img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" />
</h1>
  
<a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;">
<img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" />
</a>

## Model Overview
- **Model Architecture:** DeepseekV3ForCausalLM
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Activation quantization:** None
  - **Weight quantization:** INT4
- **Release Date:** 05/30/2025
- **Version:** 1.0
- **Validated on:** RHOAI 2.24, RHAIIS 3.2.1
- **Model Developers:** Red Hat (Neural Magic)


### Model Optimizations

This model was obtained by quantizing weights of [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) to INT4 data type.
This optimization reduces the number of bits used to represent weights from 8 to 4, reducing GPU memory requirements (by approximately 50%).
Weight quantization also reduces disk size requirements by approximately 50%.


## Deployment

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/DeepSeek-R1-0528-quantized.w4a16"
number_gpus = 8
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "Give me a short introduction to large language model."
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompt, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```

vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

<details>
  <summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary>
  
```bash
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
 --ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 8 \
--max-model-len 32768  \
--enforce-eager --model RedHatAI/DeepSeek-R1-0528-quantized.w4a16
```
</details>


<details>
  <summary>Deploy on <strong>Red Hat Openshift AI</strong></summary>
  
```python
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
 name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
 annotations:
   openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
   opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
 labels:
   opendatahub.io/dashboard: 'true'
spec:
 annotations:
   prometheus.io/port: '8080'
   prometheus.io/path: '/metrics'
 multiModel: false
 supportedModelFormats:
   - autoSelect: true
     name: vLLM
 containers:
   - name: kserve-container
     image: quay.io/modh/vllm:rhoai-2.24-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.24-rocm
     command:
       - python
       - -m
       - vllm.entrypoints.openai.api_server
     args:
       - "--port=8080"
       - "--model=/mnt/models"
       - "--served-model-name={{.Name}}"
     env:
       - name: HF_HOME
         value: /tmp/hf_home
     ports:
       - containerPort: 8080
         protocol: TCP
```

```python
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
  annotations:
    openshift.io/display-name: DeepSeek-R1-0528-quantized.w4a16 # OPTIONAL CHANGE
    serving.kserve.io/deploymentMode: RawDeployment
  name: DeepSeek-R1-0528-quantized.w4a16          # specify model name. This value will be used to invoke the model in the payload
  labels:
    opendatahub.io/dashboard: 'true'
spec:
  predictor:
    maxReplicas: 1
    minReplicas: 1
    model:
      modelFormat:
        name: vLLM
      name: ''
      resources:
        limits:
          cpu: '2'			# this is model specific
          memory: 8Gi		# this is model specific
          nvidia.com/gpu: '1'	# this is accelerator specific
        requests:			# same comment for this block
          cpu: '1'
          memory: 4Gi
          nvidia.com/gpu: '1'
      runtime: vllm-cuda-runtime	# must match the ServingRuntime name above
      storageUri: oci://registry.redhat.io/rhelai1/modelcar-deepseek-r1-0528-quantized-w4a16:1.5
    tolerations:
    - effect: NoSchedule
      key: nvidia.com/gpu
      operator: Exists
```

```bash
# make sure first to be in the project where you want to deploy the model
# oc project <project-name>

# apply both resources to run model

# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml

# Apply the InferenceService
oc apply -f qwen-inferenceservice.yaml
```

```python
# Replace <inference-service-name> and <cluster-ingress-domain> below:
# - Run `oc get inferenceservice` to find your URL if unsure.

# Call the server using curl:
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
        -H "Content-Type: application/json" \
        -d '{
    "model": "DeepSeek-R1-0528-quantized.w4a16",
    "stream": true,
    "stream_options": {
        "include_usage": true
    },
    "max_tokens": 1,
    "messages": [
        {
            "role": "user",
            "content": "How can a bee fly when its wings are so small?"
        }
    ]
}'

```

See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
</details>


## Creation

We created this model using **MoE-Quant**, a library developed jointly with **ISTA** and tailored for the quantization of very large Mixture-of-Experts (MoE) models.  

For more details, please refer to the [MoE-Quant repository](https://github.com/IST-DASLab/MoE-Quant).


## Evaluation

The model was evaluated on popular reasoning tasks (AIME 2024, MATH-500, GPQA-Diamond) via [LightEval](https://github.com/huggingface/open-r1).
For reasoning evaluations, we estimate pass@1 based on 10 runs with different seeds, `temperature=0.6`, `top_p=0.95` and `max_new_tokens=65536`.


### Accuracy

|                             | Recovery (%) | deepseek/DeepSeek-R1-0528 | RedHatAI/DeepSeek-R1-0528-quantized.w4a16<br>(this model) |
| --------------------------- | :----------: | :------------------: | :--------------------------------------------------: |
| AIME 2024<br>pass@1         | 98.50         | 88.66                | 87.33                                                |
| MATH-500<br>pass@1          | 99.88        | 97.52                | 97.40                                                |
| GPQA Diamond<br>pass@1      | 101.21        | 79.65                | 80.61                                                |
| **Reasoning<br>Average Score**  | **99.82**        | **88.61**                | **88.45**                                                |