Raymond-dev-546730 commited on
Commit
76ba6a3
·
verified ·
1 Parent(s): f637826

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -9
README.md CHANGED
@@ -142,14 +142,12 @@ The process is *beautifully* simple:
142
 
143
  Research-Reasoner-7B-v0.3 offers a comprehensive suite of capabilities tailored specifically for research planning:
144
 
145
- * **Dual-Output Structure**: Provides both detailed chain-of-thought reasoning tokens and concise answer tokens
146
- * **Cross-Domain Expertise**: Trained on diverse research topics spanning AI/ML, data science, computer science, cybersecurity, quantum computing, life sciences, engineering, environmental sciences, and social sciences
147
- * **Methodological Reasoning**: Excels at identifying appropriate research methodologies, data collection strategies, and analysis techniques
148
- * **Implementation Planning**: Offers practical insights on resource requirements, technical limitations, and execution strategies
149
- * **Evaluation Framework Design**: Helps establish clear success criteria and validation approaches for research outcomes
150
- * **Challenge Anticipation**: Proactively identifies potential obstacles, limitations, and ethical considerations
151
- * **Interdisciplinary Integration**: Particularly effective for projects bridging multiple domains or requiring novel methodological approaches
152
- * **Structured Output Format**: Consistently delivers well-organized, hierarchical research plans with clear section delineation
153
 
154
  ## Use Cases
155
 
@@ -262,7 +260,7 @@ This repository contains everything you need to use and understand Research-Reas
262
  - **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
263
  - **Hardware**: 1 × NVIDIA A100 PCIe GPU
264
  - **Training Duration**: Around 4 hours
265
- - **Dataset Summary**: Custom curated dataset specifically for research planning
266
  - **Total Token Count**: 5,840,200
267
  - **Total Sample Count**: 5,750
268
  - **Average Tokens Per Sample**: 1015.69
 
142
 
143
  Research-Reasoner-7B-v0.3 offers a comprehensive suite of capabilities tailored specifically for research planning:
144
 
145
+ * **Dual-Output Structure**: Provides both detailed reasoning and concise answers
146
+ * **Cross-Domain Expertise**: Trained on diverse research topics spanning AI/ML, data science, computer science, life sciences, engineering, and social sciences
147
+ * **Methodological Reasoning**: Identifies appropriate research methodologies and analysis techniques
148
+ * **Implementation Planning**: Offers practical insights on resource requirements and execution strategies
149
+ * **Challenge Anticipation**: Identifies potential obstacles and ethical considerations
150
+ * **Structured Output Format**: Delivers well-organized, hierarchical research plans
 
 
151
 
152
  ## Use Cases
153
 
 
260
  - **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
261
  - **Hardware**: 1 × NVIDIA A100 PCIe GPU
262
  - **Training Duration**: Around 4 hours
263
+ - **Dataset Specifications**: Custom curated dataset specifically for research planning
264
  - **Total Token Count**: 5,840,200
265
  - **Total Sample Count**: 5,750
266
  - **Average Tokens Per Sample**: 1015.69