Safetensors
GGUF
English
chain-of-thought
step-by-step-reasoning
systematic-research-planning
academic-assistant
thesis-planning
dissertation-planning
research-question-formulation
literature-review-planning
methodology-design
experimental-design
hypothesis-generation
research-proposal-helper
cross-disciplinary-research
student-research-assistant
phd-support
research-gap-analysis
literature-analysis
research-summarization
structured-output
systematic-analysis
problem-decomposition
actionable-planning
scientific-research
social-science-research
engineering-research
humanities-research
ai-research-assistant
research-automation
Research-Reasoner-7B-v0.3
Research-Reasoner-7B
Research-Reasoner
conversational
Update README.md
Browse files
README.md
CHANGED
@@ -142,14 +142,12 @@ The process is *beautifully* simple:
|
|
142 |
|
143 |
Research-Reasoner-7B-v0.3 offers a comprehensive suite of capabilities tailored specifically for research planning:
|
144 |
|
145 |
-
* **Dual-Output Structure**: Provides both detailed
|
146 |
-
* **Cross-Domain Expertise**: Trained on diverse research topics spanning AI/ML, data science, computer science,
|
147 |
-
* **Methodological Reasoning**:
|
148 |
-
* **Implementation Planning**: Offers practical insights on resource requirements
|
149 |
-
* **
|
150 |
-
* **
|
151 |
-
* **Interdisciplinary Integration**: Particularly effective for projects bridging multiple domains or requiring novel methodological approaches
|
152 |
-
* **Structured Output Format**: Consistently delivers well-organized, hierarchical research plans with clear section delineation
|
153 |
|
154 |
## Use Cases
|
155 |
|
@@ -262,7 +260,7 @@ This repository contains everything you need to use and understand Research-Reas
|
|
262 |
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
|
263 |
- **Hardware**: 1 × NVIDIA A100 PCIe GPU
|
264 |
- **Training Duration**: Around 4 hours
|
265 |
-
- **Dataset
|
266 |
- **Total Token Count**: 5,840,200
|
267 |
- **Total Sample Count**: 5,750
|
268 |
- **Average Tokens Per Sample**: 1015.69
|
|
|
142 |
|
143 |
Research-Reasoner-7B-v0.3 offers a comprehensive suite of capabilities tailored specifically for research planning:
|
144 |
|
145 |
+
* **Dual-Output Structure**: Provides both detailed reasoning and concise answers
|
146 |
+
* **Cross-Domain Expertise**: Trained on diverse research topics spanning AI/ML, data science, computer science, life sciences, engineering, and social sciences
|
147 |
+
* **Methodological Reasoning**: Identifies appropriate research methodologies and analysis techniques
|
148 |
+
* **Implementation Planning**: Offers practical insights on resource requirements and execution strategies
|
149 |
+
* **Challenge Anticipation**: Identifies potential obstacles and ethical considerations
|
150 |
+
* **Structured Output Format**: Delivers well-organized, hierarchical research plans
|
|
|
|
|
151 |
|
152 |
## Use Cases
|
153 |
|
|
|
260 |
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
|
261 |
- **Hardware**: 1 × NVIDIA A100 PCIe GPU
|
262 |
- **Training Duration**: Around 4 hours
|
263 |
+
- **Dataset Specifications**: Custom curated dataset specifically for research planning
|
264 |
- **Total Token Count**: 5,840,200
|
265 |
- **Total Sample Count**: 5,750
|
266 |
- **Average Tokens Per Sample**: 1015.69
|