Safetensors
GGUF
English
chain-of-thought
cot-reasoning
step-by-step-reasoning
systematic-research-planning
academic-assistant
academic-planning
thesis-planning
dissertation-planning
research-question-formulation
literature-review-planning
methodology-design
experimental-design
qualitative-research-planning
quantitative-research-planning
mixed-methods-planning
student-research-assistant
phd-support
postgraduate-tool
early-career-researcher
grant-writing-assistant
research-proposal-helper
cross-disciplinary-research
interdisciplinary-methodology
academic-mentorship-tool
research-evaluation-assistant
independent-researcher-tool
r-and-d-assistant
reasoning-model
structured-output
systematic-analysis
problem-decomposition
research-breakdown
actionable-planning
scientific-research
social-science-research
humanities-research
medical-research-planning
engineering-research
business-research
mistral-based
mistral-fine-tune
lora-adaptation
foundation-model
instruction-tuned
7b-parameters
ai-research-assistant
research-automation
sota-research-planning
hypothesis-generation
experiment-design-assistant
literature-analysis
paper-outline-generator
structured-output-generation
systematic-reasoning
detailed-planning
zero-shot-planning
research-summarization
biomedical-research-assistant
clinical-trial-planning
tech-r-and-d
materials-science
computational-research
data-science-assistant
literature-synthesis
meta-analysis-helper
best-research-assistant-model
top-research-planning-model
research-ai-assistant
ai-research-mentor
academic-planning-ai
research-workflow-automation
quantum-computing-research
ai-ml-research-planning
cybersecurity-research
neuroscience-research-planning
genomics-research
robotics-research-planning
climate-science-research
behavioral-economics-research
educational-technology-research
research-plan-generator
methodology-recommendation
data-collection-planning
analysis-strategy-development
implementation-planning
evaluation-framework-design
challenge-identification
resource-requirement-analysis
technical-limitation-assessment
research-gap-analysis
knowledge-synthesis
practical-research-tools
affordable-research-assistant
systematic-planning-tool
comprehensive-research-framework
research-project-management
researcher-productivity-tool
text-to-research-plan
dual-output-model
think-answer-format
evidence-based-research-planning
research-mentoring
science-domains-expert
engineering-domains-expert
social-science-domains-expert
multidisciplinary-research
structured-research-planning
hierarchical-plan-generator
convergent-thinking
divergent-thinking
research-ideation
experimental-protocol-design
mistral-research-assistant
focused-research-scope
quantitative-analysis-planning
portable-research-assistant
education-research-tool
Research-Reasoner-7B-v0.3
Research-Reasoner-7B
Research-Reasoner
conversational
Upload 2 files
Browse files
Scripts/Inference_llama.cpp.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_cpp import Llama
|
2 |
+
|
3 |
+
# Insert your research topic here
|
4 |
+
RESEARCH_TOPIC = """
|
5 |
+
|
6 |
+
"""
|
7 |
+
|
8 |
+
model_path = "./" # Path to the directory containing your model weight files
|
9 |
+
|
10 |
+
llm = Llama(
|
11 |
+
model_path=model_path,
|
12 |
+
n_gpu_layers=33,
|
13 |
+
n_ctx=2048,
|
14 |
+
n_threads=4
|
15 |
+
)
|
16 |
+
|
17 |
+
topic = RESEARCH_TOPIC.strip()
|
18 |
+
prompt = f"USER: Research Topic: \"{topic}\"\nLet's think step by step:\nASSISTANT:"
|
19 |
+
|
20 |
+
|
21 |
+
output = llm(
|
22 |
+
prompt,
|
23 |
+
max_tokens=2000,
|
24 |
+
temperature=0.7,
|
25 |
+
top_p=0.9,
|
26 |
+
repeat_penalty=1.1
|
27 |
+
)
|
28 |
+
|
29 |
+
result = output.get("choices", [{}])[0].get("text", "").strip()
|
30 |
+
|
31 |
+
print(result)
|
32 |
+
|
33 |
+
|
Scripts/Inference_safetensors.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Insert your research topic here
|
5 |
+
RESEARCH_TOPIC = """
|
6 |
+
|
7 |
+
"""
|
8 |
+
|
9 |
+
def load_model(model_path):
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
model_path,
|
12 |
+
torch_dtype=torch.float16,
|
13 |
+
device_map="auto"
|
14 |
+
)
|
15 |
+
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
17 |
+
|
18 |
+
return model, tokenizer
|
19 |
+
|
20 |
+
def generate_response(model, tokenizer, topic):
|
21 |
+
topic = topic.strip()
|
22 |
+
|
23 |
+
prompt = f"USER: Research Topic: \"{topic}\"\nLet's think step by step:\nASSISTANT:"
|
24 |
+
|
25 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
26 |
+
|
27 |
+
outputs = model.generate(
|
28 |
+
**inputs,
|
29 |
+
max_new_tokens=2000,
|
30 |
+
temperature=0.7,
|
31 |
+
top_p=0.9,
|
32 |
+
repetition_penalty=1.1,
|
33 |
+
do_sample=True
|
34 |
+
)
|
35 |
+
|
36 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
37 |
+
|
38 |
+
return response.split("ASSISTANT:")[-1].strip()
|
39 |
+
|
40 |
+
def main():
|
41 |
+
model_path = "./" # Path to the directory containing your model weight files
|
42 |
+
|
43 |
+
model, tokenizer = load_model(model_path)
|
44 |
+
|
45 |
+
result = generate_response(model, tokenizer, RESEARCH_TOPIC)
|
46 |
+
|
47 |
+
print(result)
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
main()
|