Safetensors
GGUF
English
materials-science
materials-analysis
computational-materials
property-prediction
materials-discovery
crystal-structure
semiconductor-analysis
band-gap-prediction
thermal-properties
mechanical-properties
electronic-properties
materials-informatics
scientific-ai
lora
fine-tuned
7b
chain-of-thought
reasoning
structured-output
json-analysis
domain-specific
materials-characterization
qwen-2-5-instruct
open-source
step-by-step-analysis
property-correlation
application-prediction
formation-energy-analysis
thermodynamic-stability
elastic-modulus-prediction
bulk-modulus-analysis
thermal-conductivity
thermal-expansion
magnetic-property-analysis
superconductor-detection
crystal-system-identification
spacegroup-analysis
density-calculation
volume-analysis
electron-affinity
ionization-energy
band-gap-type-classification
hexagonal-structures
wide-bandgap-semiconductors
high-power-electronics
optoelectronics
thermal-management
materials-stability
synthesis-feasibility
practical-applications
materials-recommendation
competitive-analysis
materials-verdict
scientific-reasoning
materials-properties-database
mp-materials-project
silicon-carbide-analysis
compound-semiconductors
anisotropic-materials
high-symmetry-crystals
heat-dissipation
dimensional-stability
mechanical-robustness
stiffness-analysis
compression-resistance
temperature-stability
materials-synthesis
coating-applications
abrasion-resistance
non-magnetic-materials
indirect-bandgap
materials-comparison
aln-comparison
cost-effective-materials
si-based-compounds
cryogenic-applications
quantum-computing-materials
magneto-electronics
transparent-conductors
materials-optimization
performance-metrics
materials-classification
property-relationships
structure-property-correlation
materials-design
predictive-modeling
materials-screening
high-temperature-materials
power-device-materials
semiconductor-characterization
materials-data-mining
automated-analysis
materials-intelligence
dual-output-reasoning
comprehensive-materials-analysis
materials-summary-generation
scientific-explanation
materials-expertise
research-grade-analysis
industry-applications
materials-evaluation
performance-assessment
materials-selection
engineering-materials
advanced-ceramics
compound-analysis
crystallographic-analysis
electronic-structure
phonon-properties
doping-studies
interface-analysis
surface-properties
nanomaterials
bulk-materials
thin-film-analysis
composite-materials
functional-materials
smart-materials
biomaterials
energy-materials
catalytic-materials
photovoltaic-materials
battery-materials
fuel-cell-materials
thermoelectric-materials
piezoelectric-materials
ferroelectric-materials
multiferroic-materials
phase-transition-analysis
materials-modeling
MaterialsAnalyst-AI-7B
MaterialsAnalyst-AI
MaterialsAnalyst
MaterialsAnalyst-AI-7B Training Documentation | |
================================================ | |
Model Training Details | |
--------------------- | |
Base Model: Qwen 2.5 Instruct 7B | |
Fine-tuning Method: LoRA (Low-Rank Adaptation) | |
Training Infrastructure: Single NVIDIA A100 SXM4 GPU | |
Training Duration: Approximately 5.4 hours | |
Training Dataset: Custom curated dataset for materials analysis | |
Dataset Specifications | |
--------------------- | |
Total Token Count: 6,441,671 | |
Total Sample Count: 6,000 | |
Average Tokens/Sample: 1,073.61 | |
Dataset Creation: Generated using DeepSeekV3 API | |
Training Configuration | |
--------------------- | |
LoRA Parameters: | |
- Rank: 32 | |
- Alpha: 64 | |
- Dropout: 0.1 | |
- Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, lm_head | |
Training Hyperparameters: | |
- Learning Rate: 5e-5 | |
- Batch Size: 4 | |
- Gradient Accumulation: 5 | |
- Effective Batch Size: 20 | |
- Max Sequence Length: 2048 | |
- Epochs: 3 | |
- Warmup Ratio: 0.01 | |
- Weight Decay: 0.01 | |
- Max Grad Norm: 1.0 | |
- LR Scheduler: Cosine | |
Hardware & Environment | |
--------------------- | |
GPU: NVIDIA A100 SXM4 (40GB) | |
Operating System: Ubuntu | |
CUDA Version: 11.8 | |
PyTorch Version: 2.7.0 | |
Compute Capability: 8.0 | |
Optimization: FP16, Gradient Checkpointing | |
Training Performance | |
--------------------- | |
Training Runtime: 5.37 hours (19,348 seconds) | |
Train Samples/Second: 0.884 | |
Train Steps/Second: 0.044 | |
Training Loss (Final): 0.170 | |
Validation Loss (Final): 0.136 | |
Total Training Steps: 855 |