RASMUS commited on
Commit
4279f4f
·
verified ·
1 Parent(s): fd4a1e4

Create handler.py

Browse files
Files changed (1) hide show
  1. handler.py +64 -0
handler.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ %%writefile pipeline.py
2
+ from typing import Dict, List, Any
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
4
+ import torch
5
+ import json
6
+
7
+
8
+ def generate_rag_prompt_message(context, question):
9
+ prompt = f'Olet tekoälyavustaja joka vastaa annetun kontekstin perusteella asiantuntevasti ja ystävällisesti käyttäjän kysymyksiin\n\nKonteksti: {context}\n\nKysymys: {question}\n\nVastaa yllä olevaan kysymykseen annetun kontekstin perusteella.'
10
+ prompt = [{'role': 'user', 'content': prompt}]
11
+ return prompt
12
+
13
+
14
+ class PreTrainedPipeline():
15
+ def __init__(self, path=""):
16
+ # Preload all the elements you are going to need at inference.
17
+ # pseudo:
18
+ # self.model= load_model(path)
19
+
20
+ self.model = AutoModelForCausalLM.from_pretrained(f"RASMUS/Ahma-3B-Instruct-RAG-v0.1", device_map='cuda:0', torch_dtype = torch.bfloat16).eval()
21
+ self.tokenizer = AutoTokenizer.from_pretrained(f"RASMUS/Ahma-3B-Instruct-RAG-v0.1")
22
+ self.generation_config = GenerationConfig(
23
+ pad_token_id = self.tokenizer.eos_token_id,
24
+ eos_token_id = self.tokenizer.convert_tokens_to_ids("</s>"),
25
+ )
26
+
27
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
28
+ """
29
+ data args:
30
+ inputs (:obj: `str` | `PIL.Image` | `np.array`)
31
+ kwargs
32
+ Return:
33
+ A :obj:`list` | `dict`: will be serialized and returned
34
+ """
35
+ context = data.pop("context",None)
36
+ question = data.pop("question",None)
37
+ messages = generate_rag_prompt_message(context, question)
38
+
39
+ inputs = self.tokenizer(
40
+ [
41
+ self.tokenizer.apply_chat_template(messages, tokenize=False)
42
+ ]*1, return_tensors = "pt").to("cuda")
43
+
44
+
45
+ with torch.no_grad():
46
+ generated_ids = self.model.generate(
47
+ input_ids=inputs["input_ids"],
48
+ attention_mask=inputs["attention_mask"],
49
+ generation_config=self.generation_config, **{
50
+ "temperature": 0.1,
51
+ "penalty_alpha": 0.6,
52
+ "min_p": 0.5,
53
+ "do_sample": True,
54
+ "repetition_penalty": 1.28,
55
+ "min_length": 10,
56
+ "max_new_tokens": 250
57
+ })
58
+
59
+ generated_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True)[0]
60
+ try:
61
+ generated_answer = generated_text.split('[/INST]')[1].strip()
62
+ return json.dumps({"answer": generated_answer})
63
+ except Exception as e:
64
+ return json.dumps({"answer": str(e)})