upload
Browse files- LICENSE +53 -0
- README.md +126 -0
- audio.py +443 -0
- config.json +53 -0
- configuration.json +1 -0
- configuration_qwen.py +71 -0
- cpp_kernels.py +55 -0
- generation_config.json +11 -0
- mel_filters.npz +3 -0
- model-00001-of-00009.safetensors +3 -0
- model-00002-of-00009.safetensors +3 -0
- model-00003-of-00009.safetensors +3 -0
- model-00004-of-00009.safetensors +3 -0
- model-00005-of-00009.safetensors +3 -0
- model-00006-of-00009.safetensors +3 -0
- model-00007-of-00009.safetensors +3 -0
- model-00008-of-00009.safetensors +3 -0
- model-00009-of-00009.safetensors +3 -0
- model.safetensors.index.json +756 -0
- modeling_qwen.py +1426 -0
- pytorch_model.bin.index.json +860 -0
- qwen.tiktoken +0 -0
- qwen_generation_utils.py +432 -0
- requirements.txt +10 -0
- special_tokens_map.json +1 -0
- tokenization_qwen.py +594 -0
- tokenizer_config.json +11 -0
LICENSE
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Tongyi Qianwen LICENSE AGREEMENT
|
| 2 |
+
|
| 3 |
+
Tongyi Qianwen Release Date: August 23, 2023
|
| 4 |
+
|
| 5 |
+
By clicking to agree or by using or distributing any portion or element of the Tongyi Qianwen Materials, you will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
|
| 6 |
+
|
| 7 |
+
1. Definitions
|
| 8 |
+
a. This Tongyi Qianwen LICENSE AGREEMENT (this "Agreement") shall mean the terms and conditions for use, reproduction, distribution and modification of the Materials as defined by this Agreement.
|
| 9 |
+
b. "We"(or "Us") shall mean Alibaba Cloud.
|
| 10 |
+
c. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
|
| 11 |
+
d. "Third Parties" shall mean individuals or legal entities that are not under common control with Us or You.
|
| 12 |
+
e. "Tongyi Qianwen" shall mean the large language models (including Qwen-Audio model and Qwen-Audio-Chat model), and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Us.
|
| 13 |
+
f. "Materials" shall mean, collectively, Alibaba Cloud's proprietary Tongyi Qianwen and Documentation (and any portion thereof) made available under this Agreement.
|
| 14 |
+
g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
|
| 15 |
+
h. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation,
|
| 16 |
+
and conversions to other media types.
|
| 17 |
+
|
| 18 |
+
2. Grant of Rights
|
| 19 |
+
You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Alibaba Cloud's intellectual property or other rights owned by Us embodied in the Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Materials.
|
| 20 |
+
|
| 21 |
+
3. Redistribution
|
| 22 |
+
You may reproduce and distribute copies of the Materials or derivative works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
|
| 23 |
+
a. You shall give any other recipients of the Materials or derivative works a copy of this Agreement;
|
| 24 |
+
b. You shall cause any modified files to carry prominent notices stating that You changed the files;
|
| 25 |
+
c. You shall retain in all copies of the Materials that You distribute the following attribution notices within a "Notice" text file distributed as a part of such copies: "Tongyi Qianwen is licensed under the Tongyi Qianwen LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved."; and
|
| 26 |
+
d. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such derivative works as a whole, provided Your use, reproduction, and distribution of the work otherwise complies with the terms and conditions of this Agreement.
|
| 27 |
+
|
| 28 |
+
4. Restrictions
|
| 29 |
+
If you are commercially using the Materials, and your product or service has more than 100 million monthly active users, You shall request a license from Us. You cannot exercise your rights under this Agreement without our express authorization.
|
| 30 |
+
|
| 31 |
+
5. Rules of use
|
| 32 |
+
a. The Materials may be subject to export controls or restrictions in China, the United States or other countries or regions. You shall comply with applicable laws and regulations in your use of the Materials.
|
| 33 |
+
b. You can not use the Materials or any output therefrom to improve any other large language model (excluding Tongyi Qianwen or derivative works thereof).
|
| 34 |
+
|
| 35 |
+
6. Intellectual Property
|
| 36 |
+
a. We retain ownership of all intellectual property rights in and to the Materials and derivatives made by or for Us. Conditioned upon compliance with the terms and conditions of this Agreement, with respect to any derivative works and modifications of the Materials that are made by you, you are and will be the owner of such derivative works and modifications.
|
| 37 |
+
b. No trademark license is granted to use the trade names, trademarks, service marks, or product names of Us, except as required to fulfill notice requirements under this Agreement or as required for reasonable and customary use in describing and redistributing the Materials.
|
| 38 |
+
c. If you commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against Us or any entity alleging that the Materials or any output therefrom, or any part of the foregoing, infringe any intellectual property or other right owned or licensable by you, then all licences granted to you under this Agreement shall terminate as of the date such lawsuit or other proceeding is commenced or brought.
|
| 39 |
+
|
| 40 |
+
7. Disclaimer of Warranty and Limitation of Liability
|
| 41 |
+
|
| 42 |
+
a. We are not obligated to support, update, provide training for, or develop any further version of the Tongyi Qianwen Materials or to grant any license thereto.
|
| 43 |
+
b. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. WE MAKE NO WARRANTY AND ASSUME NO RESPONSIBILITY FOR THE SAFETY OR STABILITY OF THE MATERIALS AND ANY OUTPUT THEREFROM.
|
| 44 |
+
c. IN NO EVENT SHALL WE BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO ANY DIRECT, OR INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING FROM YOUR USE OR INABILITY TO USE THE MATERIALS OR ANY OUTPUT OF IT, NO MATTER HOW IT’S CAUSED.
|
| 45 |
+
d. You will defend, indemnify and hold harmless Us from and against any claim by any third party arising out of or related to your use or distribution of the Materials.
|
| 46 |
+
|
| 47 |
+
8. Survival and Termination.
|
| 48 |
+
a. The term of this Agreement shall commence upon your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
|
| 49 |
+
b. We may terminate this Agreement if you breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, you must delete and cease use of the Materials. Sections 7 and 9 shall survive the termination of this Agreement.
|
| 50 |
+
|
| 51 |
+
9. Governing Law and Jurisdiction.
|
| 52 |
+
a. This Agreement and any dispute arising out of or relating to it will be governed by the laws of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
|
| 53 |
+
b. The People's Courts in Hangzhou City shall have exclusive jurisdiction over any dispute arising out of this Agreement.
|
README.md
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- zh
|
| 4 |
+
- en
|
| 5 |
+
tags:
|
| 6 |
+
- qwen
|
| 7 |
+
pipeline_tag: text-generation
|
| 8 |
+
inference: false
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Qwen-Audio-Chat
|
| 12 |
+
|
| 13 |
+
<br>
|
| 14 |
+
|
| 15 |
+
<p align="center">
|
| 16 |
+
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Audio/audio_logo.jpg" width="400"/>
|
| 17 |
+
<p>
|
| 18 |
+
<br>
|
| 19 |
+
|
| 20 |
+
<p align="center">
|
| 21 |
+
Qwen-Audio <a href="https://www.modelscope.cn/models/qwen/QWen-Audio/summary">🤖 <a> | <a href="https://huggingface.co/Qwen/Qwen-Audio">🤗</a>  | Qwen-Audio-Chat <a href="https://www.modelscope.cn/models/qwen/QWen-Audio-Chat/summary">🤖 <a>| <a href="https://huggingface.co/Qwen/Qwen-Audio-Chat">🤗</a>  |    Demo<a href="https://modelscope.cn/studios/qwen/Qwen-Audio-Chat-Demo/summary"> 🤖</a> | <a href="https://huggingface.co/spaces/Qwen/Qwen-Audio">🤗</a> 
|
| 22 |
+
<br>
|
| 23 |
+
  <a href="https://qwen-audio.github.io/Qwen-Audio/">Homepage</a>  |  <a href="http://arxiv.org/abs/2311.07919">Paper</a>
|
| 24 |
+
</p>
|
| 25 |
+
<br><br>
|
| 26 |
+
|
| 27 |
+
**Qwen-Audio** (Qwen Large Audio Language Model) is the multimodal version of the large model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-Audio accepts diverse audio (human speech, natural sound, music and song) and text as inputs, outputs text. The contribution of Qwen-Audio include:
|
| 28 |
+
|
| 29 |
+
- **Fundamental audio models**: Qwen-Audio is a fundamental multi-task audio-language model that supports various tasks, languages, and audio types, serving as a universal audio understanding model. Building upon Qwen-Audio, we develop Qwen-Audio-Chat through instruction fine-tuning, enabling multi-turn dialogues and supporting diverse audio-oriented scenarios.
|
| 30 |
+
- **Multi-task learning framework for all types of audios**: To scale up audio-language pre-training, we address the challenge of variation in textual labels associated with different datasets by proposing a multi-task training framework, enabling knowledge sharing and avoiding one-to-many interference. Our model incorporates more than 30 tasks and extensive experiments show the model achieves strong performance.
|
| 31 |
+
- **Strong Performance**: Experimental results show that Qwen-Audio achieves impressive performance across diverse benchmark tasks without requiring any task-specific fine-tuning, surpassing its counterparts. Specifically, Qwen-Audio achieves state-of-the-art results on the test set of Aishell1, cochlscene, ClothoAQA, and VocalSound.
|
| 32 |
+
- **Flexible multi-run chat from audio and text input**: Qwen-Audio supports multiple-audio analysis, sound understading and reasoning, music appreciation, and tool usage for speech editing.
|
| 33 |
+
|
| 34 |
+
**Qwen-Audio** 是阿里云研发的大规模音频语言模型(Large Audio Language Model)。Qwen-Audio 可以以多种音频 (包括说话人语音、自然音、音乐、歌声)和文本作为输入,并以文本作为输出。Qwen-Audio 系列模型的特点包括:
|
| 35 |
+
|
| 36 |
+
- **音频基石模型**:Qwen-Audio是一个性能卓越的通用的音频理解模型,支持各种任务、语言和音频类型。在Qwen-Audio的基础上,我们通过指令微调开发了Qwen-Audio-Chat,支持多轮、多语言、多语言对话。Qwen-Audio和Qwen-Audio-Chat模型均已开源。
|
| 37 |
+
- **兼容多种复杂音频的多任务学习框架**:为了避免由于数据收集来源不同以及任务类型不同,带来的音频到文本的一对多的干扰问题,我们提出了一种多任务训练框架,实现相似任务的知识共享,并尽可能减少不同任务之间的干扰。通过提出的框架,Qwen-Audio可以容纳训练超过30多种不同的音频任务;
|
| 38 |
+
- **出色的性能**:Qwen-Audio在不需要任何任务特定的微调的情况下,在各种基准任务上取得了领先的结果。具体得,Qwen-Audio在Aishell1、cochlscene、ClothoAQA和VocalSound的测试集上都达到了SOTA;
|
| 39 |
+
- **支持多轮音频和文本对话,支持各种语音场景**:Qwen-Audio-Chat支持声音理解和推理、音乐欣赏、多音频分析、多轮音频-文本交错对话以及外部语音工具的使用(如语音编辑)。
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
We release Qwen-Audio and Qwen-Audio-Chat, which are pretrained model and Chat model respectively. For more details about Qwen-Audio, please refer to our [Github Repo](https://github.com/QwenLM/Qwen-Audio/tree/main). This repo is the one for Qwen-Audio-Chat.
|
| 43 |
+
<br>
|
| 44 |
+
|
| 45 |
+
目前,我们提供了Qwen-Audio和Qwen-Audio-Chat两个模型,分别为预训练模型和Chat模型。如果想了解更多关于信息,请点击[链接](https://github.com/QwenLM/Qwen-Audio/tree/main)查看Github仓库。本仓库为Qwen-Audio-Chat仓库。
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
## Requirements
|
| 49 |
+
* python 3.8 and above
|
| 50 |
+
* pytorch 1.12 and above, 2.0 and above are recommended
|
| 51 |
+
* CUDA 11.4 and above are recommended (this is for GPU users)
|
| 52 |
+
* FFmpeg
|
| 53 |
+
<br>
|
| 54 |
+
|
| 55 |
+
## Quickstart
|
| 56 |
+
Below, we provide simple examples to show how to use Qwen-Audio with 🤗 Transformers.
|
| 57 |
+
|
| 58 |
+
Before running the code, make sure you have setup the environment and installed the required packages. Make sure you meet the above requirements, and then install the dependent libraries.
|
| 59 |
+
|
| 60 |
+
```bash
|
| 61 |
+
pip install -r requirements.txt
|
| 62 |
+
```
|
| 63 |
+
Now you can start with Transformers. For more usage, please refer to [tutorial](https://github.com/QwenLM/Qwen-Audio/blob/main/TUTORIAL.md).
|
| 64 |
+
|
| 65 |
+
#### 🤗 Transformers
|
| 66 |
+
|
| 67 |
+
To use Qwen-Audio for the inference, all you need to do is to input a few lines of codes as demonstrated below. However, **please make sure that you are using the latest code.**
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 71 |
+
from transformers.generation import GenerationConfig
|
| 72 |
+
import torch
|
| 73 |
+
torch.manual_seed(1234)
|
| 74 |
+
|
| 75 |
+
# Note: The default behavior now has injection attack prevention off.
|
| 76 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-Audio-Chat", trust_remote_code=True)
|
| 77 |
+
|
| 78 |
+
# use bf16
|
| 79 |
+
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
|
| 80 |
+
# use fp16
|
| 81 |
+
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()
|
| 82 |
+
# use cpu only
|
| 83 |
+
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="cpu", trust_remote_code=True).eval()
|
| 84 |
+
# use cuda device
|
| 85 |
+
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="cuda", trust_remote_code=True).eval()
|
| 86 |
+
|
| 87 |
+
# Specify hyperparameters for generation (No need to do this if you are using transformers>4.32.0)
|
| 88 |
+
# model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-Audio-Chat", trust_remote_code=True)
|
| 89 |
+
|
| 90 |
+
# 1st dialogue turn
|
| 91 |
+
query = tokenizer.from_list_format([
|
| 92 |
+
{'audio': 'https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Audio/1272-128104-0000.flac'}, # Either a local path or an url
|
| 93 |
+
{'text': 'what does the person say?'},
|
| 94 |
+
])
|
| 95 |
+
response, history = model.chat(tokenizer, query=query, history=None)
|
| 96 |
+
print(response)
|
| 97 |
+
# The person says: "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel".
|
| 98 |
+
|
| 99 |
+
# 2nd dialogue turn
|
| 100 |
+
response, history = model.chat(tokenizer, 'Find the start time and end time of the word "middle classes"', history=history)
|
| 101 |
+
print(response)
|
| 102 |
+
# The word "middle classes" starts at <|2.33|> seconds and ends at <|3.26|> seconds.
|
| 103 |
+
```
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
## License Agreement
|
| 107 |
+
Researchers and developers are free to use the codes and model weights of Qwen-Audio-Chat. We also allow its commercial use. Check our license at [LICENSE](https://github.com/QwenLM/Qwen-Audio/blob/main/LICENSE.txt) for more details.
|
| 108 |
+
<br>
|
| 109 |
+
|
| 110 |
+
## Citation
|
| 111 |
+
If you find our paper and code useful in your research, please consider giving a star and citation
|
| 112 |
+
|
| 113 |
+
```BibTeX
|
| 114 |
+
@article{Qwen-Audio,
|
| 115 |
+
title={Qwen-Audio: Advancing Universal Audio Understanding via Unified Large-Scale Audio-Language Models},
|
| 116 |
+
author={Chu, Yunfei and Xu, Jin and Zhou, Xiaohuan and Yang, Qian and Zhang, Shiliang and Yan, Zhijie and Zhou, Chang and Zhou, Jingren},
|
| 117 |
+
journal={arXiv preprint arXiv:2311.07919},
|
| 118 |
+
year={2023}
|
| 119 |
+
}
|
| 120 |
+
```
|
| 121 |
+
<br>
|
| 122 |
+
|
| 123 |
+
## Contact Us
|
| 124 |
+
|
| 125 |
+
If you are interested to leave a message to either our research team or product team, feel free to send an email to [email protected].
|
| 126 |
+
|
audio.py
ADDED
|
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import gzip
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Dict, Iterable, Optional, List
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from torch import Tensor, nn
|
| 10 |
+
from subprocess import CalledProcessError, run, Popen, PIPE
|
| 11 |
+
|
| 12 |
+
import os
|
| 13 |
+
from functools import lru_cache
|
| 14 |
+
from typing import Optional, Union
|
| 15 |
+
|
| 16 |
+
def exact_div(x, y):
|
| 17 |
+
assert x % y == 0
|
| 18 |
+
return x // y
|
| 19 |
+
|
| 20 |
+
# hard-coded audio hyperparameters
|
| 21 |
+
SAMPLE_RATE = 16000
|
| 22 |
+
N_FFT = 400
|
| 23 |
+
N_MELS = 80
|
| 24 |
+
HOP_LENGTH = 160
|
| 25 |
+
CHUNK_LENGTH = 30
|
| 26 |
+
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
|
| 27 |
+
N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000 frames in a mel spectrogram input
|
| 28 |
+
|
| 29 |
+
N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
|
| 30 |
+
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
|
| 31 |
+
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def get_T_after_cnn(L_in, dilation=1):
|
| 36 |
+
for (padding, kernel_size, stride) in eval("[(1,3,1)] + [(1,3,2)] "):
|
| 37 |
+
L_out = L_in + 2 * padding - dilation * (kernel_size - 1) - 1
|
| 38 |
+
L_out = 1 + L_out // stride
|
| 39 |
+
L_in = L_out
|
| 40 |
+
return L_out
|
| 41 |
+
|
| 42 |
+
def load_bytesio_audio(content, sr: int = SAMPLE_RATE):
|
| 43 |
+
cmd = [
|
| 44 |
+
"ffmpeg",
|
| 45 |
+
"-nostdin",
|
| 46 |
+
"-threads", "0",
|
| 47 |
+
"-i", "pipe:",
|
| 48 |
+
"-f", "s16le",
|
| 49 |
+
"-ac", "1",
|
| 50 |
+
"-acodec", "pcm_s16le",
|
| 51 |
+
"-ar", str(sr),
|
| 52 |
+
"pipe:"
|
| 53 |
+
]
|
| 54 |
+
p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE, bufsize=-1)
|
| 55 |
+
out, _ = p.communicate(input=content)
|
| 56 |
+
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
| 57 |
+
|
| 58 |
+
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
| 59 |
+
"""
|
| 60 |
+
Open an audio file and read as mono waveform, resampling as necessary
|
| 61 |
+
|
| 62 |
+
Parameters
|
| 63 |
+
----------
|
| 64 |
+
file: str
|
| 65 |
+
The audio file to open
|
| 66 |
+
|
| 67 |
+
sr: int
|
| 68 |
+
The sample rate to resample the audio if necessary
|
| 69 |
+
|
| 70 |
+
Returns
|
| 71 |
+
-------
|
| 72 |
+
A NumPy array containing the audio waveform, in float32 dtype.
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
# This launches a subprocess to decode audio while down-mixing
|
| 76 |
+
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
|
| 77 |
+
# fmt: off
|
| 78 |
+
cmd = [
|
| 79 |
+
"ffmpeg",
|
| 80 |
+
"-nostdin",
|
| 81 |
+
"-threads", "0",
|
| 82 |
+
"-i", file,
|
| 83 |
+
"-f", "s16le",
|
| 84 |
+
"-ac", "1",
|
| 85 |
+
"-acodec", "pcm_s16le",
|
| 86 |
+
"-ar", str(sr),
|
| 87 |
+
"-"
|
| 88 |
+
]
|
| 89 |
+
# fmt: on
|
| 90 |
+
try:
|
| 91 |
+
out = run(cmd, capture_output=True, check=True).stdout
|
| 92 |
+
except CalledProcessError as e:
|
| 93 |
+
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
| 94 |
+
|
| 95 |
+
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
| 99 |
+
"""
|
| 100 |
+
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
| 101 |
+
"""
|
| 102 |
+
if torch.is_tensor(array):
|
| 103 |
+
if array.shape[axis] > length:
|
| 104 |
+
array = array.index_select(
|
| 105 |
+
dim=axis, index=torch.arange(length, device=array.device)
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
if array.shape[axis] < length:
|
| 109 |
+
pad_widths = [(0, 0)] * array.ndim
|
| 110 |
+
pad_widths[axis] = (0, length - array.shape[axis])
|
| 111 |
+
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
|
| 112 |
+
else:
|
| 113 |
+
if array.shape[axis] > length:
|
| 114 |
+
array = array.take(indices=range(length), axis=axis)
|
| 115 |
+
|
| 116 |
+
if array.shape[axis] < length:
|
| 117 |
+
pad_widths = [(0, 0)] * array.ndim
|
| 118 |
+
pad_widths[axis] = (0, length - array.shape[axis])
|
| 119 |
+
array = np.pad(array, pad_widths)
|
| 120 |
+
|
| 121 |
+
return array
|
| 122 |
+
|
| 123 |
+
def trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
| 124 |
+
"""
|
| 125 |
+
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
| 126 |
+
"""
|
| 127 |
+
if torch.is_tensor(array):
|
| 128 |
+
if array.shape[axis] > length:
|
| 129 |
+
array = array.index_select(
|
| 130 |
+
dim=axis, index=torch.arange(length, device=array.device)
|
| 131 |
+
)
|
| 132 |
+
else:
|
| 133 |
+
if array.shape[axis] > length:
|
| 134 |
+
array = array.take(indices=range(length), axis=axis)
|
| 135 |
+
return array
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
@lru_cache(maxsize=None)
|
| 139 |
+
def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
|
| 140 |
+
"""
|
| 141 |
+
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
| 142 |
+
Allows decoupling librosa dependency; saved using:
|
| 143 |
+
|
| 144 |
+
np.savez_compressed(
|
| 145 |
+
"mel_filters.npz",
|
| 146 |
+
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
|
| 147 |
+
)
|
| 148 |
+
"""
|
| 149 |
+
assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
|
| 150 |
+
with np.load(
|
| 151 |
+
os.path.join(os.path.dirname(__file__), "mel_filters.npz") # todo
|
| 152 |
+
# os.path.join("assets", "mel_filters.npz")
|
| 153 |
+
) as f:
|
| 154 |
+
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def log_mel_spectrogram(
|
| 158 |
+
audio: Union[str, np.ndarray, torch.Tensor],
|
| 159 |
+
n_mels: int = N_MELS,
|
| 160 |
+
padding: int = 0,
|
| 161 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 162 |
+
):
|
| 163 |
+
"""
|
| 164 |
+
Compute the log-Mel spectrogram of
|
| 165 |
+
|
| 166 |
+
Parameters
|
| 167 |
+
----------
|
| 168 |
+
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
|
| 169 |
+
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
|
| 170 |
+
|
| 171 |
+
n_mels: int
|
| 172 |
+
The number of Mel-frequency filters, only 80 is supported
|
| 173 |
+
|
| 174 |
+
padding: int
|
| 175 |
+
Number of zero samples to pad to the right
|
| 176 |
+
|
| 177 |
+
device: Optional[Union[str, torch.device]]
|
| 178 |
+
If given, the audio tensor is moved to this device before STFT
|
| 179 |
+
|
| 180 |
+
Returns
|
| 181 |
+
-------
|
| 182 |
+
torch.Tensor, shape = (80, n_frames)
|
| 183 |
+
A Tensor that contains the Mel spectrogram
|
| 184 |
+
"""
|
| 185 |
+
if not torch.is_tensor(audio):
|
| 186 |
+
if isinstance(audio, str):
|
| 187 |
+
audio = load_audio(audio)
|
| 188 |
+
audio = torch.from_numpy(audio)
|
| 189 |
+
|
| 190 |
+
if device is not None:
|
| 191 |
+
audio = audio.to(device)
|
| 192 |
+
if padding > 0:
|
| 193 |
+
audio = F.pad(audio, (0, padding))
|
| 194 |
+
window = torch.hann_window(N_FFT).to(audio.device)
|
| 195 |
+
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
|
| 196 |
+
magnitudes = stft[..., :-1].abs() ** 2
|
| 197 |
+
|
| 198 |
+
filters = mel_filters(audio.device, n_mels)
|
| 199 |
+
mel_spec = filters @ magnitudes
|
| 200 |
+
|
| 201 |
+
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
|
| 202 |
+
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
| 203 |
+
log_spec = (log_spec + 4.0) / 4.0
|
| 204 |
+
return log_spec
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
@dataclass
|
| 208 |
+
class ModelDimensions:
|
| 209 |
+
n_mels: int
|
| 210 |
+
n_audio_ctx: int
|
| 211 |
+
n_audio_state: int
|
| 212 |
+
n_audio_head: int
|
| 213 |
+
n_audio_layer: int
|
| 214 |
+
n_vocab: int
|
| 215 |
+
n_text_ctx: int
|
| 216 |
+
n_text_state: int
|
| 217 |
+
n_text_head: int
|
| 218 |
+
n_text_layer: int
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
class LayerNorm(nn.LayerNorm):
|
| 222 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 223 |
+
# return super().forward(x.float()).type(x.dtype)
|
| 224 |
+
return super().forward(x).type(x.dtype)
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
class Linear(nn.Linear):
|
| 230 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 231 |
+
return F.linear(
|
| 232 |
+
x,
|
| 233 |
+
self.weight.to(x.dtype),
|
| 234 |
+
None if self.bias is None else self.bias.to(x.dtype),
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
class Conv1d(nn.Conv1d):
|
| 239 |
+
def _conv_forward(
|
| 240 |
+
self, x: Tensor, weight: Tensor, bias: Optional[Tensor]
|
| 241 |
+
) -> Tensor:
|
| 242 |
+
return super()._conv_forward(
|
| 243 |
+
x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype)
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def sinusoids(length, channels, max_timescale=10000):
|
| 248 |
+
"""Returns sinusoids for positional embedding"""
|
| 249 |
+
assert channels % 2 == 0
|
| 250 |
+
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
|
| 251 |
+
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
|
| 252 |
+
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
|
| 253 |
+
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
class MultiHeadAttention(nn.Module):
|
| 257 |
+
def __init__(self, n_state: int, n_head: int):
|
| 258 |
+
super().__init__()
|
| 259 |
+
self.n_head = n_head
|
| 260 |
+
self.query = Linear(n_state, n_state)
|
| 261 |
+
self.key = Linear(n_state, n_state, bias=False)
|
| 262 |
+
self.value = Linear(n_state, n_state)
|
| 263 |
+
self.out = Linear(n_state, n_state)
|
| 264 |
+
|
| 265 |
+
def forward(
|
| 266 |
+
self,
|
| 267 |
+
x: Tensor,
|
| 268 |
+
xa: Optional[Tensor] = None,
|
| 269 |
+
mask: Optional[Tensor] = None,
|
| 270 |
+
kv_cache: Optional[dict] = None,
|
| 271 |
+
):
|
| 272 |
+
q = self.query(x)
|
| 273 |
+
|
| 274 |
+
if kv_cache is None or xa is None or self.key not in kv_cache:
|
| 275 |
+
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
|
| 276 |
+
# otherwise, perform key/value projections for self- or cross-attention as usual.
|
| 277 |
+
k = self.key(x if xa is None else xa)
|
| 278 |
+
v = self.value(x if xa is None else xa)
|
| 279 |
+
else:
|
| 280 |
+
# for cross-attention, calculate keys and values once and reuse in subsequent calls.
|
| 281 |
+
k = kv_cache[self.key]
|
| 282 |
+
v = kv_cache[self.value]
|
| 283 |
+
|
| 284 |
+
wv, qk = self.qkv_attention(q, k, v, mask)
|
| 285 |
+
return self.out(wv), qk
|
| 286 |
+
|
| 287 |
+
def qkv_attention(
|
| 288 |
+
self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None
|
| 289 |
+
):
|
| 290 |
+
n_batch, n_ctx, n_state = q.shape
|
| 291 |
+
scale = (n_state // self.n_head) ** -0.25
|
| 292 |
+
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
|
| 293 |
+
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
|
| 294 |
+
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
|
| 295 |
+
|
| 296 |
+
qk = q @ k
|
| 297 |
+
if mask is not None:
|
| 298 |
+
qk += mask
|
| 299 |
+
|
| 300 |
+
w = F.softmax(qk, dim=-1).to(q.dtype)
|
| 301 |
+
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
class ResidualAttentionBlock(nn.Module):
|
| 305 |
+
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
|
| 306 |
+
super().__init__()
|
| 307 |
+
|
| 308 |
+
self.attn = MultiHeadAttention(n_state, n_head)
|
| 309 |
+
self.attn_ln = LayerNorm(n_state)
|
| 310 |
+
|
| 311 |
+
self.cross_attn = (
|
| 312 |
+
MultiHeadAttention(n_state, n_head) if cross_attention else None
|
| 313 |
+
)
|
| 314 |
+
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
|
| 315 |
+
|
| 316 |
+
n_mlp = n_state * 4
|
| 317 |
+
self.mlp = nn.Sequential(
|
| 318 |
+
Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state)
|
| 319 |
+
)
|
| 320 |
+
self.mlp_ln = LayerNorm(n_state)
|
| 321 |
+
|
| 322 |
+
def forward(
|
| 323 |
+
self,
|
| 324 |
+
x: Tensor,
|
| 325 |
+
xa: Optional[Tensor] = None,
|
| 326 |
+
mask: Optional[Tensor] = None,
|
| 327 |
+
kv_cache: Optional[dict] = None,
|
| 328 |
+
):
|
| 329 |
+
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0]
|
| 330 |
+
if self.cross_attn:
|
| 331 |
+
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
|
| 332 |
+
x = x + self.mlp(self.mlp_ln(x))
|
| 333 |
+
return x
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
class AudioEncoder(nn.Module):
|
| 337 |
+
def __init__(
|
| 338 |
+
self,
|
| 339 |
+
n_mels: int,
|
| 340 |
+
n_ctx: int,
|
| 341 |
+
n_state: int,
|
| 342 |
+
n_head: int,
|
| 343 |
+
n_layer: int,
|
| 344 |
+
output_dim: int = 512,
|
| 345 |
+
avg_pool: bool = True,
|
| 346 |
+
add_audio_bos_eos_token: bool = True,
|
| 347 |
+
**kwargs
|
| 348 |
+
):
|
| 349 |
+
super().__init__()
|
| 350 |
+
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
|
| 351 |
+
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
|
| 352 |
+
self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state))
|
| 353 |
+
|
| 354 |
+
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
|
| 355 |
+
[ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
|
| 356 |
+
)
|
| 357 |
+
self.ln_post = LayerNorm(n_state)
|
| 358 |
+
|
| 359 |
+
if avg_pool:
|
| 360 |
+
self.avg_pooler = nn.AvgPool1d(2, stride=2)
|
| 361 |
+
else:
|
| 362 |
+
self.avg_pooler = None
|
| 363 |
+
self.proj = nn.Linear(n_state, output_dim)
|
| 364 |
+
if add_audio_bos_eos_token:
|
| 365 |
+
self.audio_bos_eos_token = nn.Embedding(2, output_dim)
|
| 366 |
+
else:
|
| 367 |
+
self.audio_bos_eos_token = None
|
| 368 |
+
self.output_dim = output_dim
|
| 369 |
+
self.n_head = n_head
|
| 370 |
+
|
| 371 |
+
def forward(self, x: Tensor, padding_mask: Tensor=None, audio_lengths: Tensor=None):
|
| 372 |
+
"""
|
| 373 |
+
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
|
| 374 |
+
the mel spectrogram of the audio
|
| 375 |
+
"""
|
| 376 |
+
x = x.to(dtype=self.conv1.weight.dtype,
|
| 377 |
+
device=self.conv1.weight.device)
|
| 378 |
+
if audio_lengths is not None:
|
| 379 |
+
input_mel_len = audio_lengths[:,0] * 2
|
| 380 |
+
max_mel_len_in_batch = input_mel_len.max()
|
| 381 |
+
x = x[:, :, :max_mel_len_in_batch]
|
| 382 |
+
x = F.gelu(self.conv1(x))
|
| 383 |
+
x = F.gelu(self.conv2(x))
|
| 384 |
+
x = x.permute(0, 2, 1) # B, L, D
|
| 385 |
+
bsz = x.size(0)
|
| 386 |
+
src_len = x.size(1)
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
self.input_positional_embedding = self.positional_embedding[:src_len]
|
| 390 |
+
assert x.shape[1:] == self.input_positional_embedding.shape, f"incorrect audio shape: {x.shape[1:], self.input_positional_embedding.shape}"
|
| 391 |
+
x = (x + self.input_positional_embedding).to(x.dtype)
|
| 392 |
+
if padding_mask is not None:
|
| 393 |
+
padding_mask = padding_mask.to(dtype=self.conv1.weight.dtype,
|
| 394 |
+
device=self.conv1.weight.device)
|
| 395 |
+
batch_src_len = padding_mask.size(1)
|
| 396 |
+
x = x[:, :batch_src_len, :]
|
| 397 |
+
padding_mask = padding_mask.view(
|
| 398 |
+
bsz, -1, batch_src_len
|
| 399 |
+
)
|
| 400 |
+
padding_mask_ = padding_mask.all(1)
|
| 401 |
+
x[padding_mask_] = 0
|
| 402 |
+
key_padding_mask = padding_mask_.view(bsz, 1, 1, batch_src_len). \
|
| 403 |
+
expand(-1, self.n_head, -1, -1).reshape(bsz, self.n_head, 1, batch_src_len)
|
| 404 |
+
new_padding_mask = torch.zeros_like(key_padding_mask, dtype=x.dtype)
|
| 405 |
+
padding_mask = new_padding_mask.masked_fill(key_padding_mask, float("-inf"))
|
| 406 |
+
|
| 407 |
+
for block in self.blocks:
|
| 408 |
+
x = block(x, mask=padding_mask)
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
if self.avg_pooler:
|
| 412 |
+
x = x.permute(0, 2, 1)
|
| 413 |
+
x = self.avg_pooler(x)
|
| 414 |
+
x = x.permute(0, 2, 1)
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
x = self.ln_post(x)
|
| 418 |
+
x = self.proj(x)
|
| 419 |
+
|
| 420 |
+
if self.audio_bos_eos_token is not None:
|
| 421 |
+
bos = self.audio_bos_eos_token.weight[0][None, :]
|
| 422 |
+
eos = self.audio_bos_eos_token.weight[1][None, :]
|
| 423 |
+
else:
|
| 424 |
+
bos, eos = None, None
|
| 425 |
+
return x, bos, eos
|
| 426 |
+
|
| 427 |
+
def encode(self, input_audios: Tensor, input_audio_lengths: Tensor, audio_span_tokens: List):
|
| 428 |
+
real_input_audio_lens = input_audio_lengths[:, 0].tolist()
|
| 429 |
+
max_len_in_batch = max(real_input_audio_lens)
|
| 430 |
+
padding_mask = torch.ones([input_audios.size(0), max_len_in_batch]).to(dtype=self.conv1.weight.dtype,
|
| 431 |
+
device=self.conv1.weight.device)
|
| 432 |
+
for index in range(len(input_audios)):
|
| 433 |
+
padding_mask[index, :input_audio_lengths[index][0].item()] = 0
|
| 434 |
+
x, bos, eos = self(input_audios, padding_mask,input_audio_lengths)
|
| 435 |
+
output_audios = []
|
| 436 |
+
for i in range(len(audio_span_tokens)):
|
| 437 |
+
audio_span = audio_span_tokens[i]
|
| 438 |
+
audio = x[i][:audio_span-2]
|
| 439 |
+
if bos is not None:
|
| 440 |
+
audio = torch.concat([bos, audio, eos])
|
| 441 |
+
assert len(audio) == audio_span
|
| 442 |
+
output_audios.append(audio)
|
| 443 |
+
return output_audios
|
config.json
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "10302244_iter8000_final/",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"QWenLMHeadModel"
|
| 5 |
+
],
|
| 6 |
+
"attn_dropout_prob": 0.0,
|
| 7 |
+
"audio": {
|
| 8 |
+
"add_audio_bos_eos_token": true,
|
| 9 |
+
"audio_start_id": 155164,
|
| 10 |
+
"avg_pool": true,
|
| 11 |
+
"n_ctx": 1500,
|
| 12 |
+
"n_head": 20,
|
| 13 |
+
"n_layer": 32,
|
| 14 |
+
"n_mels": 80,
|
| 15 |
+
"n_state": 1280,
|
| 16 |
+
"output_dim": 4096
|
| 17 |
+
},
|
| 18 |
+
"auto_map": {
|
| 19 |
+
"AutoConfig": "configuration_qwen.QWenConfig",
|
| 20 |
+
"AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
|
| 21 |
+
},
|
| 22 |
+
"bf16": true,
|
| 23 |
+
"emb_dropout_prob": 0.0,
|
| 24 |
+
"fp16": false,
|
| 25 |
+
"fp32": false,
|
| 26 |
+
"hidden_size": 4096,
|
| 27 |
+
"initializer_range": 0.02,
|
| 28 |
+
"intermediate_size": 22016,
|
| 29 |
+
"kv_channels": 128,
|
| 30 |
+
"layer_norm_epsilon": 1e-05,
|
| 31 |
+
"max_position_embeddings": 8192,
|
| 32 |
+
"model_type": "qwen",
|
| 33 |
+
"no_bias": true,
|
| 34 |
+
"num_attention_heads": 32,
|
| 35 |
+
"num_hidden_layers": 32,
|
| 36 |
+
"onnx_safe": null,
|
| 37 |
+
"rotary_emb_base": 10000,
|
| 38 |
+
"rotary_pct": 1.0,
|
| 39 |
+
"scale_attn_weights": true,
|
| 40 |
+
"seq_length": 2048,
|
| 41 |
+
"softmax_in_fp32": false,
|
| 42 |
+
"tie_word_embeddings": false,
|
| 43 |
+
"tokenizer_type": "QWenTokenizer",
|
| 44 |
+
"torch_dtype": "bfloat16",
|
| 45 |
+
"transformers_version": "4.32.0",
|
| 46 |
+
"use_cache": true,
|
| 47 |
+
"use_cache_kernel": false,
|
| 48 |
+
"use_cache_quantization": false,
|
| 49 |
+
"use_dynamic_ntk": true,
|
| 50 |
+
"use_flash_attn": true,
|
| 51 |
+
"use_logn_attn": true,
|
| 52 |
+
"vocab_size": 155947
|
| 53 |
+
}
|
configuration.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"framework":"Pytorch","task":"multimodal-dialogue"}
|
configuration_qwen.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Alibaba Cloud.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the license found in the
|
| 4 |
+
# LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
from transformers import PretrainedConfig
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class QWenConfig(PretrainedConfig):
|
| 10 |
+
model_type = "qwen"
|
| 11 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 12 |
+
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
vocab_size=151936,
|
| 16 |
+
hidden_size=4096,
|
| 17 |
+
num_hidden_layers=32,
|
| 18 |
+
num_attention_heads=32,
|
| 19 |
+
emb_dropout_prob=0.0,
|
| 20 |
+
attn_dropout_prob=0.0,
|
| 21 |
+
layer_norm_epsilon=1e-6,
|
| 22 |
+
initializer_range=0.02,
|
| 23 |
+
max_position_embeddings=8192,
|
| 24 |
+
scale_attn_weights=True,
|
| 25 |
+
use_cache=True,
|
| 26 |
+
bf16=False,
|
| 27 |
+
fp16=False,
|
| 28 |
+
fp32=False,
|
| 29 |
+
kv_channels=128,
|
| 30 |
+
rotary_pct=1.0,
|
| 31 |
+
rotary_emb_base=10000,
|
| 32 |
+
use_dynamic_ntk=True,
|
| 33 |
+
use_logn_attn=True,
|
| 34 |
+
use_flash_attn="auto",
|
| 35 |
+
intermediate_size=22016,
|
| 36 |
+
no_bias=True,
|
| 37 |
+
tie_word_embeddings=False,
|
| 38 |
+
use_cache_quantization=False,
|
| 39 |
+
use_cache_kernel=False,
|
| 40 |
+
softmax_in_fp32=False,
|
| 41 |
+
**kwargs,
|
| 42 |
+
):
|
| 43 |
+
self.vocab_size = vocab_size
|
| 44 |
+
self.hidden_size = hidden_size
|
| 45 |
+
self.intermediate_size = intermediate_size
|
| 46 |
+
self.num_hidden_layers = num_hidden_layers
|
| 47 |
+
self.num_attention_heads = num_attention_heads
|
| 48 |
+
self.emb_dropout_prob = emb_dropout_prob
|
| 49 |
+
self.attn_dropout_prob = attn_dropout_prob
|
| 50 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 51 |
+
self.initializer_range = initializer_range
|
| 52 |
+
self.scale_attn_weights = scale_attn_weights
|
| 53 |
+
self.use_cache = use_cache
|
| 54 |
+
self.max_position_embeddings = max_position_embeddings
|
| 55 |
+
self.bf16 = bf16
|
| 56 |
+
self.fp16 = fp16
|
| 57 |
+
self.fp32 = fp32
|
| 58 |
+
self.kv_channels = kv_channels
|
| 59 |
+
self.rotary_pct = rotary_pct
|
| 60 |
+
self.rotary_emb_base = rotary_emb_base
|
| 61 |
+
self.use_dynamic_ntk = use_dynamic_ntk
|
| 62 |
+
self.use_logn_attn = use_logn_attn
|
| 63 |
+
self.use_flash_attn = use_flash_attn
|
| 64 |
+
self.no_bias = no_bias
|
| 65 |
+
self.use_cache_quantization = use_cache_quantization
|
| 66 |
+
self.use_cache_kernel = use_cache_kernel
|
| 67 |
+
self.softmax_in_fp32 = softmax_in_fp32
|
| 68 |
+
super().__init__(
|
| 69 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 70 |
+
**kwargs
|
| 71 |
+
)
|
cpp_kernels.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torch.utils import cpp_extension
|
| 2 |
+
import pathlib
|
| 3 |
+
import os
|
| 4 |
+
import subprocess
|
| 5 |
+
|
| 6 |
+
def _get_cuda_bare_metal_version(cuda_dir):
|
| 7 |
+
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
|
| 8 |
+
universal_newlines=True)
|
| 9 |
+
output = raw_output.split()
|
| 10 |
+
release_idx = output.index("release") + 1
|
| 11 |
+
release = output[release_idx].split(".")
|
| 12 |
+
bare_metal_major = release[0]
|
| 13 |
+
bare_metal_minor = release[1][0]
|
| 14 |
+
|
| 15 |
+
return raw_output, bare_metal_major, bare_metal_minor
|
| 16 |
+
|
| 17 |
+
def _create_build_dir(buildpath):
|
| 18 |
+
try:
|
| 19 |
+
os.mkdir(buildpath)
|
| 20 |
+
except OSError:
|
| 21 |
+
if not os.path.isdir(buildpath):
|
| 22 |
+
print(f"Creation of the build directory {buildpath} failed")
|
| 23 |
+
|
| 24 |
+
# Check if cuda 11 is installed for compute capability 8.0
|
| 25 |
+
cc_flag = []
|
| 26 |
+
_, bare_metal_major, bare_metal_minor = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
|
| 27 |
+
if int(bare_metal_major) >= 11:
|
| 28 |
+
cc_flag.append('-gencode')
|
| 29 |
+
cc_flag.append('arch=compute_80,code=sm_80')
|
| 30 |
+
if int(bare_metal_minor) >= 7:
|
| 31 |
+
cc_flag.append('-gencode')
|
| 32 |
+
cc_flag.append('arch=compute_90,code=sm_90')
|
| 33 |
+
|
| 34 |
+
# Build path
|
| 35 |
+
srcpath = pathlib.Path(__file__).parent.absolute()
|
| 36 |
+
buildpath = srcpath / 'build'
|
| 37 |
+
_create_build_dir(buildpath)
|
| 38 |
+
|
| 39 |
+
def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
|
| 40 |
+
return cpp_extension.load(
|
| 41 |
+
name=name,
|
| 42 |
+
sources=sources,
|
| 43 |
+
build_directory=buildpath,
|
| 44 |
+
extra_cflags=['-O3', ],
|
| 45 |
+
extra_cuda_cflags=['-O3',
|
| 46 |
+
'-gencode', 'arch=compute_70,code=sm_70',
|
| 47 |
+
'--use_fast_math'] + extra_cuda_flags + cc_flag,
|
| 48 |
+
verbose=1
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
extra_flags = []
|
| 52 |
+
|
| 53 |
+
cache_autogptq_cuda_256_sources = ["./cache_autogptq_cuda_256.cpp",
|
| 54 |
+
"./cache_autogptq_cuda_kernel_256.cu"]
|
| 55 |
+
cache_autogptq_cuda_256 = _cpp_extention_load_helper("cache_autogptq_cuda_256", cache_autogptq_cuda_256_sources, extra_flags)
|
generation_config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"chat_format": "chatml",
|
| 3 |
+
"eos_token_id": 151643,
|
| 4 |
+
"pad_token_id": 151643,
|
| 5 |
+
"max_window_size": 6144,
|
| 6 |
+
"max_new_tokens": 512,
|
| 7 |
+
"do_sample": true,
|
| 8 |
+
"top_k": 0,
|
| 9 |
+
"top_p": 0.5,
|
| 10 |
+
"transformers_version": "4.31.0"
|
| 11 |
+
}
|
mel_filters.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dd2cc75e70e36fcbdd8ffbc2499062f30094093e6bf2cbafa9859f59972b420b
|
| 3 |
+
size 2048
|
model-00001-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f2d650d005d65ad01269d313b6567bc594fb5e0b55ca7df7c2c4e03c40bb29f7
|
| 3 |
+
size 1996924600
|
model-00002-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:126cc6bcfe1db1be42e6359dd62e48d546124e0f24ff979574b6cffd22c9de39
|
| 3 |
+
size 1933783168
|
model-00003-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:94d1440b3da648cfc18b321683e8b3151e8e799752c535998faaa748919c6202
|
| 3 |
+
size 1933783168
|
model-00004-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e7ddf4f7003b6d64ca033f7c5dc1fd5786e07e004fa81c6a27bc41314470d226
|
| 3 |
+
size 1990398008
|
model-00005-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f92ba83949ae9db0cecf0f88a228dd347352866dff6d3a2d537e62bae724de2a
|
| 3 |
+
size 1923272752
|
model-00006-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4002cea5509717c4165a533edc6826a5e3e3031159ef76da8c41631a713ffd24
|
| 3 |
+
size 1933774896
|
model-00007-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cf7e408c1d0bc261c641779cf32a8144ebefe0a3b852e371719d5b37c9521cb6
|
| 3 |
+
size 1933783200
|
model-00008-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3081751832f66719d7efee969f838872ff4a8e41585ac33e35c2fc4e08dbeee9
|
| 3 |
+
size 1869291816
|
model-00009-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9fb9f613d1fb54bf6e46f792bc5cec0e4156ebe23200c522814b9c56e186470b
|
| 3 |
+
size 1277517952
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,756 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 16792444928
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00009-of-00009.safetensors",
|
| 7 |
+
"transformer.audio.audio_bos_eos_token.weight": "model-00008-of-00009.safetensors",
|
| 8 |
+
"transformer.audio.blocks.0.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 9 |
+
"transformer.audio.blocks.0.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 10 |
+
"transformer.audio.blocks.0.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 11 |
+
"transformer.audio.blocks.0.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 12 |
+
"transformer.audio.blocks.0.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 13 |
+
"transformer.audio.blocks.0.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 14 |
+
"transformer.audio.blocks.0.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 15 |
+
"transformer.audio.blocks.0.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 16 |
+
"transformer.audio.blocks.0.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 17 |
+
"transformer.audio.blocks.0.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 18 |
+
"transformer.audio.blocks.0.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 19 |
+
"transformer.audio.blocks.0.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 20 |
+
"transformer.audio.blocks.0.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 21 |
+
"transformer.audio.blocks.0.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 22 |
+
"transformer.audio.blocks.0.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 23 |
+
"transformer.audio.blocks.1.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 24 |
+
"transformer.audio.blocks.1.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 25 |
+
"transformer.audio.blocks.1.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 26 |
+
"transformer.audio.blocks.1.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 27 |
+
"transformer.audio.blocks.1.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 28 |
+
"transformer.audio.blocks.1.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 29 |
+
"transformer.audio.blocks.1.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 30 |
+
"transformer.audio.blocks.1.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 31 |
+
"transformer.audio.blocks.1.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 32 |
+
"transformer.audio.blocks.1.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 33 |
+
"transformer.audio.blocks.1.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 34 |
+
"transformer.audio.blocks.1.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 35 |
+
"transformer.audio.blocks.1.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 36 |
+
"transformer.audio.blocks.1.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 37 |
+
"transformer.audio.blocks.1.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 38 |
+
"transformer.audio.blocks.10.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 39 |
+
"transformer.audio.blocks.10.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 40 |
+
"transformer.audio.blocks.10.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 41 |
+
"transformer.audio.blocks.10.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 42 |
+
"transformer.audio.blocks.10.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 43 |
+
"transformer.audio.blocks.10.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 44 |
+
"transformer.audio.blocks.10.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 45 |
+
"transformer.audio.blocks.10.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 46 |
+
"transformer.audio.blocks.10.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 47 |
+
"transformer.audio.blocks.10.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 48 |
+
"transformer.audio.blocks.10.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 49 |
+
"transformer.audio.blocks.10.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 50 |
+
"transformer.audio.blocks.10.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 51 |
+
"transformer.audio.blocks.10.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 52 |
+
"transformer.audio.blocks.10.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 53 |
+
"transformer.audio.blocks.11.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 54 |
+
"transformer.audio.blocks.11.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 55 |
+
"transformer.audio.blocks.11.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 56 |
+
"transformer.audio.blocks.11.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 57 |
+
"transformer.audio.blocks.11.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 58 |
+
"transformer.audio.blocks.11.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 59 |
+
"transformer.audio.blocks.11.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 60 |
+
"transformer.audio.blocks.11.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 61 |
+
"transformer.audio.blocks.11.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 62 |
+
"transformer.audio.blocks.11.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 63 |
+
"transformer.audio.blocks.11.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 64 |
+
"transformer.audio.blocks.11.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 65 |
+
"transformer.audio.blocks.11.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 66 |
+
"transformer.audio.blocks.11.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 67 |
+
"transformer.audio.blocks.11.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 68 |
+
"transformer.audio.blocks.12.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 69 |
+
"transformer.audio.blocks.12.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 70 |
+
"transformer.audio.blocks.12.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 71 |
+
"transformer.audio.blocks.12.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 72 |
+
"transformer.audio.blocks.12.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 73 |
+
"transformer.audio.blocks.12.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 74 |
+
"transformer.audio.blocks.12.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 75 |
+
"transformer.audio.blocks.12.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 76 |
+
"transformer.audio.blocks.12.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 77 |
+
"transformer.audio.blocks.12.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 78 |
+
"transformer.audio.blocks.12.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 79 |
+
"transformer.audio.blocks.12.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 80 |
+
"transformer.audio.blocks.12.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 81 |
+
"transformer.audio.blocks.12.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 82 |
+
"transformer.audio.blocks.12.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 83 |
+
"transformer.audio.blocks.13.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 84 |
+
"transformer.audio.blocks.13.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 85 |
+
"transformer.audio.blocks.13.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 86 |
+
"transformer.audio.blocks.13.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 87 |
+
"transformer.audio.blocks.13.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 88 |
+
"transformer.audio.blocks.13.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 89 |
+
"transformer.audio.blocks.13.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 90 |
+
"transformer.audio.blocks.13.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 91 |
+
"transformer.audio.blocks.13.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 92 |
+
"transformer.audio.blocks.13.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 93 |
+
"transformer.audio.blocks.13.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 94 |
+
"transformer.audio.blocks.13.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 95 |
+
"transformer.audio.blocks.13.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 96 |
+
"transformer.audio.blocks.13.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 97 |
+
"transformer.audio.blocks.13.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 98 |
+
"transformer.audio.blocks.14.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 99 |
+
"transformer.audio.blocks.14.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 100 |
+
"transformer.audio.blocks.14.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 101 |
+
"transformer.audio.blocks.14.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 102 |
+
"transformer.audio.blocks.14.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 103 |
+
"transformer.audio.blocks.14.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 104 |
+
"transformer.audio.blocks.14.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 105 |
+
"transformer.audio.blocks.14.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 106 |
+
"transformer.audio.blocks.14.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 107 |
+
"transformer.audio.blocks.14.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 108 |
+
"transformer.audio.blocks.14.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 109 |
+
"transformer.audio.blocks.14.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 110 |
+
"transformer.audio.blocks.14.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 111 |
+
"transformer.audio.blocks.14.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 112 |
+
"transformer.audio.blocks.14.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 113 |
+
"transformer.audio.blocks.15.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 114 |
+
"transformer.audio.blocks.15.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 115 |
+
"transformer.audio.blocks.15.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 116 |
+
"transformer.audio.blocks.15.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 117 |
+
"transformer.audio.blocks.15.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 118 |
+
"transformer.audio.blocks.15.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 119 |
+
"transformer.audio.blocks.15.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 120 |
+
"transformer.audio.blocks.15.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 121 |
+
"transformer.audio.blocks.15.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 122 |
+
"transformer.audio.blocks.15.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 123 |
+
"transformer.audio.blocks.15.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 124 |
+
"transformer.audio.blocks.15.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 125 |
+
"transformer.audio.blocks.15.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 126 |
+
"transformer.audio.blocks.15.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 127 |
+
"transformer.audio.blocks.15.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 128 |
+
"transformer.audio.blocks.16.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 129 |
+
"transformer.audio.blocks.16.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 130 |
+
"transformer.audio.blocks.16.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 131 |
+
"transformer.audio.blocks.16.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 132 |
+
"transformer.audio.blocks.16.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 133 |
+
"transformer.audio.blocks.16.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 134 |
+
"transformer.audio.blocks.16.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 135 |
+
"transformer.audio.blocks.16.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 136 |
+
"transformer.audio.blocks.16.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 137 |
+
"transformer.audio.blocks.16.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 138 |
+
"transformer.audio.blocks.16.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 139 |
+
"transformer.audio.blocks.16.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 140 |
+
"transformer.audio.blocks.16.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 141 |
+
"transformer.audio.blocks.16.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 142 |
+
"transformer.audio.blocks.16.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 143 |
+
"transformer.audio.blocks.17.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 144 |
+
"transformer.audio.blocks.17.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 145 |
+
"transformer.audio.blocks.17.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 146 |
+
"transformer.audio.blocks.17.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 147 |
+
"transformer.audio.blocks.17.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 148 |
+
"transformer.audio.blocks.17.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 149 |
+
"transformer.audio.blocks.17.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 150 |
+
"transformer.audio.blocks.17.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 151 |
+
"transformer.audio.blocks.17.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 152 |
+
"transformer.audio.blocks.17.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 153 |
+
"transformer.audio.blocks.17.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 154 |
+
"transformer.audio.blocks.17.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 155 |
+
"transformer.audio.blocks.17.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 156 |
+
"transformer.audio.blocks.17.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 157 |
+
"transformer.audio.blocks.17.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 158 |
+
"transformer.audio.blocks.18.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 159 |
+
"transformer.audio.blocks.18.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 160 |
+
"transformer.audio.blocks.18.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 161 |
+
"transformer.audio.blocks.18.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 162 |
+
"transformer.audio.blocks.18.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 163 |
+
"transformer.audio.blocks.18.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 164 |
+
"transformer.audio.blocks.18.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 165 |
+
"transformer.audio.blocks.18.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 166 |
+
"transformer.audio.blocks.18.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 167 |
+
"transformer.audio.blocks.18.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 168 |
+
"transformer.audio.blocks.18.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 169 |
+
"transformer.audio.blocks.18.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 170 |
+
"transformer.audio.blocks.18.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 171 |
+
"transformer.audio.blocks.18.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 172 |
+
"transformer.audio.blocks.18.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 173 |
+
"transformer.audio.blocks.19.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 174 |
+
"transformer.audio.blocks.19.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 175 |
+
"transformer.audio.blocks.19.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 176 |
+
"transformer.audio.blocks.19.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 177 |
+
"transformer.audio.blocks.19.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 178 |
+
"transformer.audio.blocks.19.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 179 |
+
"transformer.audio.blocks.19.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 180 |
+
"transformer.audio.blocks.19.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 181 |
+
"transformer.audio.blocks.19.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 182 |
+
"transformer.audio.blocks.19.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 183 |
+
"transformer.audio.blocks.19.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 184 |
+
"transformer.audio.blocks.19.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 185 |
+
"transformer.audio.blocks.19.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 186 |
+
"transformer.audio.blocks.19.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 187 |
+
"transformer.audio.blocks.19.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 188 |
+
"transformer.audio.blocks.2.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 189 |
+
"transformer.audio.blocks.2.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 190 |
+
"transformer.audio.blocks.2.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 191 |
+
"transformer.audio.blocks.2.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 192 |
+
"transformer.audio.blocks.2.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 193 |
+
"transformer.audio.blocks.2.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 194 |
+
"transformer.audio.blocks.2.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 195 |
+
"transformer.audio.blocks.2.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 196 |
+
"transformer.audio.blocks.2.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 197 |
+
"transformer.audio.blocks.2.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 198 |
+
"transformer.audio.blocks.2.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 199 |
+
"transformer.audio.blocks.2.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 200 |
+
"transformer.audio.blocks.2.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 201 |
+
"transformer.audio.blocks.2.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 202 |
+
"transformer.audio.blocks.2.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 203 |
+
"transformer.audio.blocks.20.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 204 |
+
"transformer.audio.blocks.20.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 205 |
+
"transformer.audio.blocks.20.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 206 |
+
"transformer.audio.blocks.20.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 207 |
+
"transformer.audio.blocks.20.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 208 |
+
"transformer.audio.blocks.20.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 209 |
+
"transformer.audio.blocks.20.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 210 |
+
"transformer.audio.blocks.20.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 211 |
+
"transformer.audio.blocks.20.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 212 |
+
"transformer.audio.blocks.20.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 213 |
+
"transformer.audio.blocks.20.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 214 |
+
"transformer.audio.blocks.20.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 215 |
+
"transformer.audio.blocks.20.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 216 |
+
"transformer.audio.blocks.20.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 217 |
+
"transformer.audio.blocks.20.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 218 |
+
"transformer.audio.blocks.21.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 219 |
+
"transformer.audio.blocks.21.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 220 |
+
"transformer.audio.blocks.21.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 221 |
+
"transformer.audio.blocks.21.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 222 |
+
"transformer.audio.blocks.21.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 223 |
+
"transformer.audio.blocks.21.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 224 |
+
"transformer.audio.blocks.21.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 225 |
+
"transformer.audio.blocks.21.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 226 |
+
"transformer.audio.blocks.21.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 227 |
+
"transformer.audio.blocks.21.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 228 |
+
"transformer.audio.blocks.21.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 229 |
+
"transformer.audio.blocks.21.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 230 |
+
"transformer.audio.blocks.21.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 231 |
+
"transformer.audio.blocks.21.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 232 |
+
"transformer.audio.blocks.21.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 233 |
+
"transformer.audio.blocks.22.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 234 |
+
"transformer.audio.blocks.22.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 235 |
+
"transformer.audio.blocks.22.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 236 |
+
"transformer.audio.blocks.22.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 237 |
+
"transformer.audio.blocks.22.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 238 |
+
"transformer.audio.blocks.22.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 239 |
+
"transformer.audio.blocks.22.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 240 |
+
"transformer.audio.blocks.22.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 241 |
+
"transformer.audio.blocks.22.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 242 |
+
"transformer.audio.blocks.22.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 243 |
+
"transformer.audio.blocks.22.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 244 |
+
"transformer.audio.blocks.22.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 245 |
+
"transformer.audio.blocks.22.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 246 |
+
"transformer.audio.blocks.22.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 247 |
+
"transformer.audio.blocks.22.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 248 |
+
"transformer.audio.blocks.23.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 249 |
+
"transformer.audio.blocks.23.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 250 |
+
"transformer.audio.blocks.23.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 251 |
+
"transformer.audio.blocks.23.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 252 |
+
"transformer.audio.blocks.23.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 253 |
+
"transformer.audio.blocks.23.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 254 |
+
"transformer.audio.blocks.23.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 255 |
+
"transformer.audio.blocks.23.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 256 |
+
"transformer.audio.blocks.23.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 257 |
+
"transformer.audio.blocks.23.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 258 |
+
"transformer.audio.blocks.23.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 259 |
+
"transformer.audio.blocks.23.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 260 |
+
"transformer.audio.blocks.23.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 261 |
+
"transformer.audio.blocks.23.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 262 |
+
"transformer.audio.blocks.23.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 263 |
+
"transformer.audio.blocks.24.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 264 |
+
"transformer.audio.blocks.24.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 265 |
+
"transformer.audio.blocks.24.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 266 |
+
"transformer.audio.blocks.24.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 267 |
+
"transformer.audio.blocks.24.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 268 |
+
"transformer.audio.blocks.24.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 269 |
+
"transformer.audio.blocks.24.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 270 |
+
"transformer.audio.blocks.24.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 271 |
+
"transformer.audio.blocks.24.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 272 |
+
"transformer.audio.blocks.24.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 273 |
+
"transformer.audio.blocks.24.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 274 |
+
"transformer.audio.blocks.24.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 275 |
+
"transformer.audio.blocks.24.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 276 |
+
"transformer.audio.blocks.24.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 277 |
+
"transformer.audio.blocks.24.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 278 |
+
"transformer.audio.blocks.25.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 279 |
+
"transformer.audio.blocks.25.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 280 |
+
"transformer.audio.blocks.25.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 281 |
+
"transformer.audio.blocks.25.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 282 |
+
"transformer.audio.blocks.25.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 283 |
+
"transformer.audio.blocks.25.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 284 |
+
"transformer.audio.blocks.25.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 285 |
+
"transformer.audio.blocks.25.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 286 |
+
"transformer.audio.blocks.25.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 287 |
+
"transformer.audio.blocks.25.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 288 |
+
"transformer.audio.blocks.25.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 289 |
+
"transformer.audio.blocks.25.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 290 |
+
"transformer.audio.blocks.25.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 291 |
+
"transformer.audio.blocks.25.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 292 |
+
"transformer.audio.blocks.25.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 293 |
+
"transformer.audio.blocks.26.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 294 |
+
"transformer.audio.blocks.26.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 295 |
+
"transformer.audio.blocks.26.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 296 |
+
"transformer.audio.blocks.26.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 297 |
+
"transformer.audio.blocks.26.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 298 |
+
"transformer.audio.blocks.26.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 299 |
+
"transformer.audio.blocks.26.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 300 |
+
"transformer.audio.blocks.26.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 301 |
+
"transformer.audio.blocks.26.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 302 |
+
"transformer.audio.blocks.26.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 303 |
+
"transformer.audio.blocks.26.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 304 |
+
"transformer.audio.blocks.26.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 305 |
+
"transformer.audio.blocks.26.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 306 |
+
"transformer.audio.blocks.26.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 307 |
+
"transformer.audio.blocks.26.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 308 |
+
"transformer.audio.blocks.27.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 309 |
+
"transformer.audio.blocks.27.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 310 |
+
"transformer.audio.blocks.27.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 311 |
+
"transformer.audio.blocks.27.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 312 |
+
"transformer.audio.blocks.27.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 313 |
+
"transformer.audio.blocks.27.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 314 |
+
"transformer.audio.blocks.27.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 315 |
+
"transformer.audio.blocks.27.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 316 |
+
"transformer.audio.blocks.27.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 317 |
+
"transformer.audio.blocks.27.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 318 |
+
"transformer.audio.blocks.27.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 319 |
+
"transformer.audio.blocks.27.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 320 |
+
"transformer.audio.blocks.27.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 321 |
+
"transformer.audio.blocks.27.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 322 |
+
"transformer.audio.blocks.27.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 323 |
+
"transformer.audio.blocks.28.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 324 |
+
"transformer.audio.blocks.28.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 325 |
+
"transformer.audio.blocks.28.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 326 |
+
"transformer.audio.blocks.28.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 327 |
+
"transformer.audio.blocks.28.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 328 |
+
"transformer.audio.blocks.28.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 329 |
+
"transformer.audio.blocks.28.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 330 |
+
"transformer.audio.blocks.28.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 331 |
+
"transformer.audio.blocks.28.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 332 |
+
"transformer.audio.blocks.28.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 333 |
+
"transformer.audio.blocks.28.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 334 |
+
"transformer.audio.blocks.28.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 335 |
+
"transformer.audio.blocks.28.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 336 |
+
"transformer.audio.blocks.28.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 337 |
+
"transformer.audio.blocks.28.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 338 |
+
"transformer.audio.blocks.29.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 339 |
+
"transformer.audio.blocks.29.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 340 |
+
"transformer.audio.blocks.29.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 341 |
+
"transformer.audio.blocks.29.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 342 |
+
"transformer.audio.blocks.29.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 343 |
+
"transformer.audio.blocks.29.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 344 |
+
"transformer.audio.blocks.29.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 345 |
+
"transformer.audio.blocks.29.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 346 |
+
"transformer.audio.blocks.29.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 347 |
+
"transformer.audio.blocks.29.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 348 |
+
"transformer.audio.blocks.29.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 349 |
+
"transformer.audio.blocks.29.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 350 |
+
"transformer.audio.blocks.29.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 351 |
+
"transformer.audio.blocks.29.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 352 |
+
"transformer.audio.blocks.29.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 353 |
+
"transformer.audio.blocks.3.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 354 |
+
"transformer.audio.blocks.3.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 355 |
+
"transformer.audio.blocks.3.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 356 |
+
"transformer.audio.blocks.3.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 357 |
+
"transformer.audio.blocks.3.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 358 |
+
"transformer.audio.blocks.3.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 359 |
+
"transformer.audio.blocks.3.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 360 |
+
"transformer.audio.blocks.3.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 361 |
+
"transformer.audio.blocks.3.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 362 |
+
"transformer.audio.blocks.3.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 363 |
+
"transformer.audio.blocks.3.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 364 |
+
"transformer.audio.blocks.3.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 365 |
+
"transformer.audio.blocks.3.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 366 |
+
"transformer.audio.blocks.3.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 367 |
+
"transformer.audio.blocks.3.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 368 |
+
"transformer.audio.blocks.30.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 369 |
+
"transformer.audio.blocks.30.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 370 |
+
"transformer.audio.blocks.30.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 371 |
+
"transformer.audio.blocks.30.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 372 |
+
"transformer.audio.blocks.30.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 373 |
+
"transformer.audio.blocks.30.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 374 |
+
"transformer.audio.blocks.30.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 375 |
+
"transformer.audio.blocks.30.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 376 |
+
"transformer.audio.blocks.30.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 377 |
+
"transformer.audio.blocks.30.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 378 |
+
"transformer.audio.blocks.30.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 379 |
+
"transformer.audio.blocks.30.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 380 |
+
"transformer.audio.blocks.30.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 381 |
+
"transformer.audio.blocks.30.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 382 |
+
"transformer.audio.blocks.30.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 383 |
+
"transformer.audio.blocks.31.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 384 |
+
"transformer.audio.blocks.31.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 385 |
+
"transformer.audio.blocks.31.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 386 |
+
"transformer.audio.blocks.31.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 387 |
+
"transformer.audio.blocks.31.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 388 |
+
"transformer.audio.blocks.31.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 389 |
+
"transformer.audio.blocks.31.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 390 |
+
"transformer.audio.blocks.31.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 391 |
+
"transformer.audio.blocks.31.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 392 |
+
"transformer.audio.blocks.31.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 393 |
+
"transformer.audio.blocks.31.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 394 |
+
"transformer.audio.blocks.31.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 395 |
+
"transformer.audio.blocks.31.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 396 |
+
"transformer.audio.blocks.31.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 397 |
+
"transformer.audio.blocks.31.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 398 |
+
"transformer.audio.blocks.4.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 399 |
+
"transformer.audio.blocks.4.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 400 |
+
"transformer.audio.blocks.4.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 401 |
+
"transformer.audio.blocks.4.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 402 |
+
"transformer.audio.blocks.4.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 403 |
+
"transformer.audio.blocks.4.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 404 |
+
"transformer.audio.blocks.4.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 405 |
+
"transformer.audio.blocks.4.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 406 |
+
"transformer.audio.blocks.4.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 407 |
+
"transformer.audio.blocks.4.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 408 |
+
"transformer.audio.blocks.4.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 409 |
+
"transformer.audio.blocks.4.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 410 |
+
"transformer.audio.blocks.4.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 411 |
+
"transformer.audio.blocks.4.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 412 |
+
"transformer.audio.blocks.4.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 413 |
+
"transformer.audio.blocks.5.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 414 |
+
"transformer.audio.blocks.5.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 415 |
+
"transformer.audio.blocks.5.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 416 |
+
"transformer.audio.blocks.5.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 417 |
+
"transformer.audio.blocks.5.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 418 |
+
"transformer.audio.blocks.5.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 419 |
+
"transformer.audio.blocks.5.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 420 |
+
"transformer.audio.blocks.5.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 421 |
+
"transformer.audio.blocks.5.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 422 |
+
"transformer.audio.blocks.5.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 423 |
+
"transformer.audio.blocks.5.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 424 |
+
"transformer.audio.blocks.5.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 425 |
+
"transformer.audio.blocks.5.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 426 |
+
"transformer.audio.blocks.5.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 427 |
+
"transformer.audio.blocks.5.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 428 |
+
"transformer.audio.blocks.6.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 429 |
+
"transformer.audio.blocks.6.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 430 |
+
"transformer.audio.blocks.6.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 431 |
+
"transformer.audio.blocks.6.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 432 |
+
"transformer.audio.blocks.6.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 433 |
+
"transformer.audio.blocks.6.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 434 |
+
"transformer.audio.blocks.6.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 435 |
+
"transformer.audio.blocks.6.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 436 |
+
"transformer.audio.blocks.6.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 437 |
+
"transformer.audio.blocks.6.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 438 |
+
"transformer.audio.blocks.6.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 439 |
+
"transformer.audio.blocks.6.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 440 |
+
"transformer.audio.blocks.6.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 441 |
+
"transformer.audio.blocks.6.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 442 |
+
"transformer.audio.blocks.6.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 443 |
+
"transformer.audio.blocks.7.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 444 |
+
"transformer.audio.blocks.7.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 445 |
+
"transformer.audio.blocks.7.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 446 |
+
"transformer.audio.blocks.7.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 447 |
+
"transformer.audio.blocks.7.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 448 |
+
"transformer.audio.blocks.7.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 449 |
+
"transformer.audio.blocks.7.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 450 |
+
"transformer.audio.blocks.7.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 451 |
+
"transformer.audio.blocks.7.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 452 |
+
"transformer.audio.blocks.7.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 453 |
+
"transformer.audio.blocks.7.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 454 |
+
"transformer.audio.blocks.7.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 455 |
+
"transformer.audio.blocks.7.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 456 |
+
"transformer.audio.blocks.7.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 457 |
+
"transformer.audio.blocks.7.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 458 |
+
"transformer.audio.blocks.8.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 459 |
+
"transformer.audio.blocks.8.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 460 |
+
"transformer.audio.blocks.8.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 461 |
+
"transformer.audio.blocks.8.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 462 |
+
"transformer.audio.blocks.8.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 463 |
+
"transformer.audio.blocks.8.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 464 |
+
"transformer.audio.blocks.8.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 465 |
+
"transformer.audio.blocks.8.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 466 |
+
"transformer.audio.blocks.8.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 467 |
+
"transformer.audio.blocks.8.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 468 |
+
"transformer.audio.blocks.8.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 469 |
+
"transformer.audio.blocks.8.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 470 |
+
"transformer.audio.blocks.8.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 471 |
+
"transformer.audio.blocks.8.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 472 |
+
"transformer.audio.blocks.8.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 473 |
+
"transformer.audio.blocks.9.attn.key.weight": "model-00008-of-00009.safetensors",
|
| 474 |
+
"transformer.audio.blocks.9.attn.out.bias": "model-00008-of-00009.safetensors",
|
| 475 |
+
"transformer.audio.blocks.9.attn.out.weight": "model-00008-of-00009.safetensors",
|
| 476 |
+
"transformer.audio.blocks.9.attn.query.bias": "model-00008-of-00009.safetensors",
|
| 477 |
+
"transformer.audio.blocks.9.attn.query.weight": "model-00008-of-00009.safetensors",
|
| 478 |
+
"transformer.audio.blocks.9.attn.value.bias": "model-00008-of-00009.safetensors",
|
| 479 |
+
"transformer.audio.blocks.9.attn.value.weight": "model-00008-of-00009.safetensors",
|
| 480 |
+
"transformer.audio.blocks.9.attn_ln.bias": "model-00008-of-00009.safetensors",
|
| 481 |
+
"transformer.audio.blocks.9.attn_ln.weight": "model-00008-of-00009.safetensors",
|
| 482 |
+
"transformer.audio.blocks.9.mlp.0.bias": "model-00008-of-00009.safetensors",
|
| 483 |
+
"transformer.audio.blocks.9.mlp.0.weight": "model-00008-of-00009.safetensors",
|
| 484 |
+
"transformer.audio.blocks.9.mlp.2.bias": "model-00008-of-00009.safetensors",
|
| 485 |
+
"transformer.audio.blocks.9.mlp.2.weight": "model-00008-of-00009.safetensors",
|
| 486 |
+
"transformer.audio.blocks.9.mlp_ln.bias": "model-00008-of-00009.safetensors",
|
| 487 |
+
"transformer.audio.blocks.9.mlp_ln.weight": "model-00008-of-00009.safetensors",
|
| 488 |
+
"transformer.audio.conv1.bias": "model-00008-of-00009.safetensors",
|
| 489 |
+
"transformer.audio.conv1.weight": "model-00008-of-00009.safetensors",
|
| 490 |
+
"transformer.audio.conv2.bias": "model-00008-of-00009.safetensors",
|
| 491 |
+
"transformer.audio.conv2.weight": "model-00008-of-00009.safetensors",
|
| 492 |
+
"transformer.audio.ln_post.bias": "model-00008-of-00009.safetensors",
|
| 493 |
+
"transformer.audio.ln_post.weight": "model-00008-of-00009.safetensors",
|
| 494 |
+
"transformer.audio.positional_embedding": "model-00008-of-00009.safetensors",
|
| 495 |
+
"transformer.audio.proj.bias": "model-00008-of-00009.safetensors",
|
| 496 |
+
"transformer.audio.proj.weight": "model-00008-of-00009.safetensors",
|
| 497 |
+
"transformer.h.0.attn.c_attn.bias": "model-00001-of-00009.safetensors",
|
| 498 |
+
"transformer.h.0.attn.c_attn.weight": "model-00001-of-00009.safetensors",
|
| 499 |
+
"transformer.h.0.attn.c_proj.weight": "model-00001-of-00009.safetensors",
|
| 500 |
+
"transformer.h.0.ln_1.weight": "model-00001-of-00009.safetensors",
|
| 501 |
+
"transformer.h.0.ln_2.weight": "model-00001-of-00009.safetensors",
|
| 502 |
+
"transformer.h.0.mlp.c_proj.weight": "model-00001-of-00009.safetensors",
|
| 503 |
+
"transformer.h.0.mlp.w1.weight": "model-00001-of-00009.safetensors",
|
| 504 |
+
"transformer.h.0.mlp.w2.weight": "model-00001-of-00009.safetensors",
|
| 505 |
+
"transformer.h.1.attn.c_attn.bias": "model-00001-of-00009.safetensors",
|
| 506 |
+
"transformer.h.1.attn.c_attn.weight": "model-00001-of-00009.safetensors",
|
| 507 |
+
"transformer.h.1.attn.c_proj.weight": "model-00001-of-00009.safetensors",
|
| 508 |
+
"transformer.h.1.ln_1.weight": "model-00001-of-00009.safetensors",
|
| 509 |
+
"transformer.h.1.ln_2.weight": "model-00001-of-00009.safetensors",
|
| 510 |
+
"transformer.h.1.mlp.c_proj.weight": "model-00002-of-00009.safetensors",
|
| 511 |
+
"transformer.h.1.mlp.w1.weight": "model-00001-of-00009.safetensors",
|
| 512 |
+
"transformer.h.1.mlp.w2.weight": "model-00001-of-00009.safetensors",
|
| 513 |
+
"transformer.h.10.attn.c_attn.bias": "model-00003-of-00009.safetensors",
|
| 514 |
+
"transformer.h.10.attn.c_attn.weight": "model-00003-of-00009.safetensors",
|
| 515 |
+
"transformer.h.10.attn.c_proj.weight": "model-00003-of-00009.safetensors",
|
| 516 |
+
"transformer.h.10.ln_1.weight": "model-00003-of-00009.safetensors",
|
| 517 |
+
"transformer.h.10.ln_2.weight": "model-00003-of-00009.safetensors",
|
| 518 |
+
"transformer.h.10.mlp.c_proj.weight": "model-00003-of-00009.safetensors",
|
| 519 |
+
"transformer.h.10.mlp.w1.weight": "model-00003-of-00009.safetensors",
|
| 520 |
+
"transformer.h.10.mlp.w2.weight": "model-00003-of-00009.safetensors",
|
| 521 |
+
"transformer.h.11.attn.c_attn.bias": "model-00003-of-00009.safetensors",
|
| 522 |
+
"transformer.h.11.attn.c_attn.weight": "model-00003-of-00009.safetensors",
|
| 523 |
+
"transformer.h.11.attn.c_proj.weight": "model-00003-of-00009.safetensors",
|
| 524 |
+
"transformer.h.11.ln_1.weight": "model-00003-of-00009.safetensors",
|
| 525 |
+
"transformer.h.11.ln_2.weight": "model-00003-of-00009.safetensors",
|
| 526 |
+
"transformer.h.11.mlp.c_proj.weight": "model-00004-of-00009.safetensors",
|
| 527 |
+
"transformer.h.11.mlp.w1.weight": "model-00004-of-00009.safetensors",
|
| 528 |
+
"transformer.h.11.mlp.w2.weight": "model-00004-of-00009.safetensors",
|
| 529 |
+
"transformer.h.12.attn.c_attn.bias": "model-00004-of-00009.safetensors",
|
| 530 |
+
"transformer.h.12.attn.c_attn.weight": "model-00004-of-00009.safetensors",
|
| 531 |
+
"transformer.h.12.attn.c_proj.weight": "model-00004-of-00009.safetensors",
|
| 532 |
+
"transformer.h.12.ln_1.weight": "model-00004-of-00009.safetensors",
|
| 533 |
+
"transformer.h.12.ln_2.weight": "model-00004-of-00009.safetensors",
|
| 534 |
+
"transformer.h.12.mlp.c_proj.weight": "model-00004-of-00009.safetensors",
|
| 535 |
+
"transformer.h.12.mlp.w1.weight": "model-00004-of-00009.safetensors",
|
| 536 |
+
"transformer.h.12.mlp.w2.weight": "model-00004-of-00009.safetensors",
|
| 537 |
+
"transformer.h.13.attn.c_attn.bias": "model-00004-of-00009.safetensors",
|
| 538 |
+
"transformer.h.13.attn.c_attn.weight": "model-00004-of-00009.safetensors",
|
| 539 |
+
"transformer.h.13.attn.c_proj.weight": "model-00004-of-00009.safetensors",
|
| 540 |
+
"transformer.h.13.ln_1.weight": "model-00004-of-00009.safetensors",
|
| 541 |
+
"transformer.h.13.ln_2.weight": "model-00004-of-00009.safetensors",
|
| 542 |
+
"transformer.h.13.mlp.c_proj.weight": "model-00004-of-00009.safetensors",
|
| 543 |
+
"transformer.h.13.mlp.w1.weight": "model-00004-of-00009.safetensors",
|
| 544 |
+
"transformer.h.13.mlp.w2.weight": "model-00004-of-00009.safetensors",
|
| 545 |
+
"transformer.h.14.attn.c_attn.bias": "model-00004-of-00009.safetensors",
|
| 546 |
+
"transformer.h.14.attn.c_attn.weight": "model-00004-of-00009.safetensors",
|
| 547 |
+
"transformer.h.14.attn.c_proj.weight": "model-00004-of-00009.safetensors",
|
| 548 |
+
"transformer.h.14.ln_1.weight": "model-00004-of-00009.safetensors",
|
| 549 |
+
"transformer.h.14.ln_2.weight": "model-00004-of-00009.safetensors",
|
| 550 |
+
"transformer.h.14.mlp.c_proj.weight": "model-00004-of-00009.safetensors",
|
| 551 |
+
"transformer.h.14.mlp.w1.weight": "model-00004-of-00009.safetensors",
|
| 552 |
+
"transformer.h.14.mlp.w2.weight": "model-00004-of-00009.safetensors",
|
| 553 |
+
"transformer.h.15.attn.c_attn.bias": "model-00004-of-00009.safetensors",
|
| 554 |
+
"transformer.h.15.attn.c_attn.weight": "model-00004-of-00009.safetensors",
|
| 555 |
+
"transformer.h.15.attn.c_proj.weight": "model-00004-of-00009.safetensors",
|
| 556 |
+
"transformer.h.15.ln_1.weight": "model-00004-of-00009.safetensors",
|
| 557 |
+
"transformer.h.15.ln_2.weight": "model-00004-of-00009.safetensors",
|
| 558 |
+
"transformer.h.15.mlp.c_proj.weight": "model-00004-of-00009.safetensors",
|
| 559 |
+
"transformer.h.15.mlp.w1.weight": "model-00004-of-00009.safetensors",
|
| 560 |
+
"transformer.h.15.mlp.w2.weight": "model-00004-of-00009.safetensors",
|
| 561 |
+
"transformer.h.16.attn.c_attn.bias": "model-00004-of-00009.safetensors",
|
| 562 |
+
"transformer.h.16.attn.c_attn.weight": "model-00004-of-00009.safetensors",
|
| 563 |
+
"transformer.h.16.attn.c_proj.weight": "model-00005-of-00009.safetensors",
|
| 564 |
+
"transformer.h.16.ln_1.weight": "model-00004-of-00009.safetensors",
|
| 565 |
+
"transformer.h.16.ln_2.weight": "model-00005-of-00009.safetensors",
|
| 566 |
+
"transformer.h.16.mlp.c_proj.weight": "model-00005-of-00009.safetensors",
|
| 567 |
+
"transformer.h.16.mlp.w1.weight": "model-00005-of-00009.safetensors",
|
| 568 |
+
"transformer.h.16.mlp.w2.weight": "model-00005-of-00009.safetensors",
|
| 569 |
+
"transformer.h.17.attn.c_attn.bias": "model-00005-of-00009.safetensors",
|
| 570 |
+
"transformer.h.17.attn.c_attn.weight": "model-00005-of-00009.safetensors",
|
| 571 |
+
"transformer.h.17.attn.c_proj.weight": "model-00005-of-00009.safetensors",
|
| 572 |
+
"transformer.h.17.ln_1.weight": "model-00005-of-00009.safetensors",
|
| 573 |
+
"transformer.h.17.ln_2.weight": "model-00005-of-00009.safetensors",
|
| 574 |
+
"transformer.h.17.mlp.c_proj.weight": "model-00005-of-00009.safetensors",
|
| 575 |
+
"transformer.h.17.mlp.w1.weight": "model-00005-of-00009.safetensors",
|
| 576 |
+
"transformer.h.17.mlp.w2.weight": "model-00005-of-00009.safetensors",
|
| 577 |
+
"transformer.h.18.attn.c_attn.bias": "model-00005-of-00009.safetensors",
|
| 578 |
+
"transformer.h.18.attn.c_attn.weight": "model-00005-of-00009.safetensors",
|
| 579 |
+
"transformer.h.18.attn.c_proj.weight": "model-00005-of-00009.safetensors",
|
| 580 |
+
"transformer.h.18.ln_1.weight": "model-00005-of-00009.safetensors",
|
| 581 |
+
"transformer.h.18.ln_2.weight": "model-00005-of-00009.safetensors",
|
| 582 |
+
"transformer.h.18.mlp.c_proj.weight": "model-00005-of-00009.safetensors",
|
| 583 |
+
"transformer.h.18.mlp.w1.weight": "model-00005-of-00009.safetensors",
|
| 584 |
+
"transformer.h.18.mlp.w2.weight": "model-00005-of-00009.safetensors",
|
| 585 |
+
"transformer.h.19.attn.c_attn.bias": "model-00005-of-00009.safetensors",
|
| 586 |
+
"transformer.h.19.attn.c_attn.weight": "model-00005-of-00009.safetensors",
|
| 587 |
+
"transformer.h.19.attn.c_proj.weight": "model-00005-of-00009.safetensors",
|
| 588 |
+
"transformer.h.19.ln_1.weight": "model-00005-of-00009.safetensors",
|
| 589 |
+
"transformer.h.19.ln_2.weight": "model-00005-of-00009.safetensors",
|
| 590 |
+
"transformer.h.19.mlp.c_proj.weight": "model-00005-of-00009.safetensors",
|
| 591 |
+
"transformer.h.19.mlp.w1.weight": "model-00005-of-00009.safetensors",
|
| 592 |
+
"transformer.h.19.mlp.w2.weight": "model-00005-of-00009.safetensors",
|
| 593 |
+
"transformer.h.2.attn.c_attn.bias": "model-00002-of-00009.safetensors",
|
| 594 |
+
"transformer.h.2.attn.c_attn.weight": "model-00002-of-00009.safetensors",
|
| 595 |
+
"transformer.h.2.attn.c_proj.weight": "model-00002-of-00009.safetensors",
|
| 596 |
+
"transformer.h.2.ln_1.weight": "model-00002-of-00009.safetensors",
|
| 597 |
+
"transformer.h.2.ln_2.weight": "model-00002-of-00009.safetensors",
|
| 598 |
+
"transformer.h.2.mlp.c_proj.weight": "model-00002-of-00009.safetensors",
|
| 599 |
+
"transformer.h.2.mlp.w1.weight": "model-00002-of-00009.safetensors",
|
| 600 |
+
"transformer.h.2.mlp.w2.weight": "model-00002-of-00009.safetensors",
|
| 601 |
+
"transformer.h.20.attn.c_attn.bias": "model-00005-of-00009.safetensors",
|
| 602 |
+
"transformer.h.20.attn.c_attn.weight": "model-00005-of-00009.safetensors",
|
| 603 |
+
"transformer.h.20.attn.c_proj.weight": "model-00005-of-00009.safetensors",
|
| 604 |
+
"transformer.h.20.ln_1.weight": "model-00005-of-00009.safetensors",
|
| 605 |
+
"transformer.h.20.ln_2.weight": "model-00005-of-00009.safetensors",
|
| 606 |
+
"transformer.h.20.mlp.c_proj.weight": "model-00005-of-00009.safetensors",
|
| 607 |
+
"transformer.h.20.mlp.w1.weight": "model-00005-of-00009.safetensors",
|
| 608 |
+
"transformer.h.20.mlp.w2.weight": "model-00005-of-00009.safetensors",
|
| 609 |
+
"transformer.h.21.attn.c_attn.bias": "model-00006-of-00009.safetensors",
|
| 610 |
+
"transformer.h.21.attn.c_attn.weight": "model-00006-of-00009.safetensors",
|
| 611 |
+
"transformer.h.21.attn.c_proj.weight": "model-00006-of-00009.safetensors",
|
| 612 |
+
"transformer.h.21.ln_1.weight": "model-00005-of-00009.safetensors",
|
| 613 |
+
"transformer.h.21.ln_2.weight": "model-00006-of-00009.safetensors",
|
| 614 |
+
"transformer.h.21.mlp.c_proj.weight": "model-00006-of-00009.safetensors",
|
| 615 |
+
"transformer.h.21.mlp.w1.weight": "model-00006-of-00009.safetensors",
|
| 616 |
+
"transformer.h.21.mlp.w2.weight": "model-00006-of-00009.safetensors",
|
| 617 |
+
"transformer.h.22.attn.c_attn.bias": "model-00006-of-00009.safetensors",
|
| 618 |
+
"transformer.h.22.attn.c_attn.weight": "model-00006-of-00009.safetensors",
|
| 619 |
+
"transformer.h.22.attn.c_proj.weight": "model-00006-of-00009.safetensors",
|
| 620 |
+
"transformer.h.22.ln_1.weight": "model-00006-of-00009.safetensors",
|
| 621 |
+
"transformer.h.22.ln_2.weight": "model-00006-of-00009.safetensors",
|
| 622 |
+
"transformer.h.22.mlp.c_proj.weight": "model-00006-of-00009.safetensors",
|
| 623 |
+
"transformer.h.22.mlp.w1.weight": "model-00006-of-00009.safetensors",
|
| 624 |
+
"transformer.h.22.mlp.w2.weight": "model-00006-of-00009.safetensors",
|
| 625 |
+
"transformer.h.23.attn.c_attn.bias": "model-00006-of-00009.safetensors",
|
| 626 |
+
"transformer.h.23.attn.c_attn.weight": "model-00006-of-00009.safetensors",
|
| 627 |
+
"transformer.h.23.attn.c_proj.weight": "model-00006-of-00009.safetensors",
|
| 628 |
+
"transformer.h.23.ln_1.weight": "model-00006-of-00009.safetensors",
|
| 629 |
+
"transformer.h.23.ln_2.weight": "model-00006-of-00009.safetensors",
|
| 630 |
+
"transformer.h.23.mlp.c_proj.weight": "model-00006-of-00009.safetensors",
|
| 631 |
+
"transformer.h.23.mlp.w1.weight": "model-00006-of-00009.safetensors",
|
| 632 |
+
"transformer.h.23.mlp.w2.weight": "model-00006-of-00009.safetensors",
|
| 633 |
+
"transformer.h.24.attn.c_attn.bias": "model-00006-of-00009.safetensors",
|
| 634 |
+
"transformer.h.24.attn.c_attn.weight": "model-00006-of-00009.safetensors",
|
| 635 |
+
"transformer.h.24.attn.c_proj.weight": "model-00006-of-00009.safetensors",
|
| 636 |
+
"transformer.h.24.ln_1.weight": "model-00006-of-00009.safetensors",
|
| 637 |
+
"transformer.h.24.ln_2.weight": "model-00006-of-00009.safetensors",
|
| 638 |
+
"transformer.h.24.mlp.c_proj.weight": "model-00006-of-00009.safetensors",
|
| 639 |
+
"transformer.h.24.mlp.w1.weight": "model-00006-of-00009.safetensors",
|
| 640 |
+
"transformer.h.24.mlp.w2.weight": "model-00006-of-00009.safetensors",
|
| 641 |
+
"transformer.h.25.attn.c_attn.bias": "model-00006-of-00009.safetensors",
|
| 642 |
+
"transformer.h.25.attn.c_attn.weight": "model-00006-of-00009.safetensors",
|
| 643 |
+
"transformer.h.25.attn.c_proj.weight": "model-00006-of-00009.safetensors",
|
| 644 |
+
"transformer.h.25.ln_1.weight": "model-00006-of-00009.safetensors",
|
| 645 |
+
"transformer.h.25.ln_2.weight": "model-00006-of-00009.safetensors",
|
| 646 |
+
"transformer.h.25.mlp.c_proj.weight": "model-00007-of-00009.safetensors",
|
| 647 |
+
"transformer.h.25.mlp.w1.weight": "model-00006-of-00009.safetensors",
|
| 648 |
+
"transformer.h.25.mlp.w2.weight": "model-00006-of-00009.safetensors",
|
| 649 |
+
"transformer.h.26.attn.c_attn.bias": "model-00007-of-00009.safetensors",
|
| 650 |
+
"transformer.h.26.attn.c_attn.weight": "model-00007-of-00009.safetensors",
|
| 651 |
+
"transformer.h.26.attn.c_proj.weight": "model-00007-of-00009.safetensors",
|
| 652 |
+
"transformer.h.26.ln_1.weight": "model-00007-of-00009.safetensors",
|
| 653 |
+
"transformer.h.26.ln_2.weight": "model-00007-of-00009.safetensors",
|
| 654 |
+
"transformer.h.26.mlp.c_proj.weight": "model-00007-of-00009.safetensors",
|
| 655 |
+
"transformer.h.26.mlp.w1.weight": "model-00007-of-00009.safetensors",
|
| 656 |
+
"transformer.h.26.mlp.w2.weight": "model-00007-of-00009.safetensors",
|
| 657 |
+
"transformer.h.27.attn.c_attn.bias": "model-00007-of-00009.safetensors",
|
| 658 |
+
"transformer.h.27.attn.c_attn.weight": "model-00007-of-00009.safetensors",
|
| 659 |
+
"transformer.h.27.attn.c_proj.weight": "model-00007-of-00009.safetensors",
|
| 660 |
+
"transformer.h.27.ln_1.weight": "model-00007-of-00009.safetensors",
|
| 661 |
+
"transformer.h.27.ln_2.weight": "model-00007-of-00009.safetensors",
|
| 662 |
+
"transformer.h.27.mlp.c_proj.weight": "model-00007-of-00009.safetensors",
|
| 663 |
+
"transformer.h.27.mlp.w1.weight": "model-00007-of-00009.safetensors",
|
| 664 |
+
"transformer.h.27.mlp.w2.weight": "model-00007-of-00009.safetensors",
|
| 665 |
+
"transformer.h.28.attn.c_attn.bias": "model-00007-of-00009.safetensors",
|
| 666 |
+
"transformer.h.28.attn.c_attn.weight": "model-00007-of-00009.safetensors",
|
| 667 |
+
"transformer.h.28.attn.c_proj.weight": "model-00007-of-00009.safetensors",
|
| 668 |
+
"transformer.h.28.ln_1.weight": "model-00007-of-00009.safetensors",
|
| 669 |
+
"transformer.h.28.ln_2.weight": "model-00007-of-00009.safetensors",
|
| 670 |
+
"transformer.h.28.mlp.c_proj.weight": "model-00007-of-00009.safetensors",
|
| 671 |
+
"transformer.h.28.mlp.w1.weight": "model-00007-of-00009.safetensors",
|
| 672 |
+
"transformer.h.28.mlp.w2.weight": "model-00007-of-00009.safetensors",
|
| 673 |
+
"transformer.h.29.attn.c_attn.bias": "model-00007-of-00009.safetensors",
|
| 674 |
+
"transformer.h.29.attn.c_attn.weight": "model-00007-of-00009.safetensors",
|
| 675 |
+
"transformer.h.29.attn.c_proj.weight": "model-00007-of-00009.safetensors",
|
| 676 |
+
"transformer.h.29.ln_1.weight": "model-00007-of-00009.safetensors",
|
| 677 |
+
"transformer.h.29.ln_2.weight": "model-00007-of-00009.safetensors",
|
| 678 |
+
"transformer.h.29.mlp.c_proj.weight": "model-00007-of-00009.safetensors",
|
| 679 |
+
"transformer.h.29.mlp.w1.weight": "model-00007-of-00009.safetensors",
|
| 680 |
+
"transformer.h.29.mlp.w2.weight": "model-00007-of-00009.safetensors",
|
| 681 |
+
"transformer.h.3.attn.c_attn.bias": "model-00002-of-00009.safetensors",
|
| 682 |
+
"transformer.h.3.attn.c_attn.weight": "model-00002-of-00009.safetensors",
|
| 683 |
+
"transformer.h.3.attn.c_proj.weight": "model-00002-of-00009.safetensors",
|
| 684 |
+
"transformer.h.3.ln_1.weight": "model-00002-of-00009.safetensors",
|
| 685 |
+
"transformer.h.3.ln_2.weight": "model-00002-of-00009.safetensors",
|
| 686 |
+
"transformer.h.3.mlp.c_proj.weight": "model-00002-of-00009.safetensors",
|
| 687 |
+
"transformer.h.3.mlp.w1.weight": "model-00002-of-00009.safetensors",
|
| 688 |
+
"transformer.h.3.mlp.w2.weight": "model-00002-of-00009.safetensors",
|
| 689 |
+
"transformer.h.30.attn.c_attn.bias": "model-00007-of-00009.safetensors",
|
| 690 |
+
"transformer.h.30.attn.c_attn.weight": "model-00007-of-00009.safetensors",
|
| 691 |
+
"transformer.h.30.attn.c_proj.weight": "model-00007-of-00009.safetensors",
|
| 692 |
+
"transformer.h.30.ln_1.weight": "model-00007-of-00009.safetensors",
|
| 693 |
+
"transformer.h.30.ln_2.weight": "model-00007-of-00009.safetensors",
|
| 694 |
+
"transformer.h.30.mlp.c_proj.weight": "model-00008-of-00009.safetensors",
|
| 695 |
+
"transformer.h.30.mlp.w1.weight": "model-00007-of-00009.safetensors",
|
| 696 |
+
"transformer.h.30.mlp.w2.weight": "model-00008-of-00009.safetensors",
|
| 697 |
+
"transformer.h.31.attn.c_attn.bias": "model-00008-of-00009.safetensors",
|
| 698 |
+
"transformer.h.31.attn.c_attn.weight": "model-00008-of-00009.safetensors",
|
| 699 |
+
"transformer.h.31.attn.c_proj.weight": "model-00008-of-00009.safetensors",
|
| 700 |
+
"transformer.h.31.ln_1.weight": "model-00008-of-00009.safetensors",
|
| 701 |
+
"transformer.h.31.ln_2.weight": "model-00008-of-00009.safetensors",
|
| 702 |
+
"transformer.h.31.mlp.c_proj.weight": "model-00008-of-00009.safetensors",
|
| 703 |
+
"transformer.h.31.mlp.w1.weight": "model-00008-of-00009.safetensors",
|
| 704 |
+
"transformer.h.31.mlp.w2.weight": "model-00008-of-00009.safetensors",
|
| 705 |
+
"transformer.h.4.attn.c_attn.bias": "model-00002-of-00009.safetensors",
|
| 706 |
+
"transformer.h.4.attn.c_attn.weight": "model-00002-of-00009.safetensors",
|
| 707 |
+
"transformer.h.4.attn.c_proj.weight": "model-00002-of-00009.safetensors",
|
| 708 |
+
"transformer.h.4.ln_1.weight": "model-00002-of-00009.safetensors",
|
| 709 |
+
"transformer.h.4.ln_2.weight": "model-00002-of-00009.safetensors",
|
| 710 |
+
"transformer.h.4.mlp.c_proj.weight": "model-00002-of-00009.safetensors",
|
| 711 |
+
"transformer.h.4.mlp.w1.weight": "model-00002-of-00009.safetensors",
|
| 712 |
+
"transformer.h.4.mlp.w2.weight": "model-00002-of-00009.safetensors",
|
| 713 |
+
"transformer.h.5.attn.c_attn.bias": "model-00002-of-00009.safetensors",
|
| 714 |
+
"transformer.h.5.attn.c_attn.weight": "model-00002-of-00009.safetensors",
|
| 715 |
+
"transformer.h.5.attn.c_proj.weight": "model-00002-of-00009.safetensors",
|
| 716 |
+
"transformer.h.5.ln_1.weight": "model-00002-of-00009.safetensors",
|
| 717 |
+
"transformer.h.5.ln_2.weight": "model-00002-of-00009.safetensors",
|
| 718 |
+
"transformer.h.5.mlp.c_proj.weight": "model-00002-of-00009.safetensors",
|
| 719 |
+
"transformer.h.5.mlp.w1.weight": "model-00002-of-00009.safetensors",
|
| 720 |
+
"transformer.h.5.mlp.w2.weight": "model-00002-of-00009.safetensors",
|
| 721 |
+
"transformer.h.6.attn.c_attn.bias": "model-00002-of-00009.safetensors",
|
| 722 |
+
"transformer.h.6.attn.c_attn.weight": "model-00002-of-00009.safetensors",
|
| 723 |
+
"transformer.h.6.attn.c_proj.weight": "model-00002-of-00009.safetensors",
|
| 724 |
+
"transformer.h.6.ln_1.weight": "model-00002-of-00009.safetensors",
|
| 725 |
+
"transformer.h.6.ln_2.weight": "model-00002-of-00009.safetensors",
|
| 726 |
+
"transformer.h.6.mlp.c_proj.weight": "model-00003-of-00009.safetensors",
|
| 727 |
+
"transformer.h.6.mlp.w1.weight": "model-00002-of-00009.safetensors",
|
| 728 |
+
"transformer.h.6.mlp.w2.weight": "model-00003-of-00009.safetensors",
|
| 729 |
+
"transformer.h.7.attn.c_attn.bias": "model-00003-of-00009.safetensors",
|
| 730 |
+
"transformer.h.7.attn.c_attn.weight": "model-00003-of-00009.safetensors",
|
| 731 |
+
"transformer.h.7.attn.c_proj.weight": "model-00003-of-00009.safetensors",
|
| 732 |
+
"transformer.h.7.ln_1.weight": "model-00003-of-00009.safetensors",
|
| 733 |
+
"transformer.h.7.ln_2.weight": "model-00003-of-00009.safetensors",
|
| 734 |
+
"transformer.h.7.mlp.c_proj.weight": "model-00003-of-00009.safetensors",
|
| 735 |
+
"transformer.h.7.mlp.w1.weight": "model-00003-of-00009.safetensors",
|
| 736 |
+
"transformer.h.7.mlp.w2.weight": "model-00003-of-00009.safetensors",
|
| 737 |
+
"transformer.h.8.attn.c_attn.bias": "model-00003-of-00009.safetensors",
|
| 738 |
+
"transformer.h.8.attn.c_attn.weight": "model-00003-of-00009.safetensors",
|
| 739 |
+
"transformer.h.8.attn.c_proj.weight": "model-00003-of-00009.safetensors",
|
| 740 |
+
"transformer.h.8.ln_1.weight": "model-00003-of-00009.safetensors",
|
| 741 |
+
"transformer.h.8.ln_2.weight": "model-00003-of-00009.safetensors",
|
| 742 |
+
"transformer.h.8.mlp.c_proj.weight": "model-00003-of-00009.safetensors",
|
| 743 |
+
"transformer.h.8.mlp.w1.weight": "model-00003-of-00009.safetensors",
|
| 744 |
+
"transformer.h.8.mlp.w2.weight": "model-00003-of-00009.safetensors",
|
| 745 |
+
"transformer.h.9.attn.c_attn.bias": "model-00003-of-00009.safetensors",
|
| 746 |
+
"transformer.h.9.attn.c_attn.weight": "model-00003-of-00009.safetensors",
|
| 747 |
+
"transformer.h.9.attn.c_proj.weight": "model-00003-of-00009.safetensors",
|
| 748 |
+
"transformer.h.9.ln_1.weight": "model-00003-of-00009.safetensors",
|
| 749 |
+
"transformer.h.9.ln_2.weight": "model-00003-of-00009.safetensors",
|
| 750 |
+
"transformer.h.9.mlp.c_proj.weight": "model-00003-of-00009.safetensors",
|
| 751 |
+
"transformer.h.9.mlp.w1.weight": "model-00003-of-00009.safetensors",
|
| 752 |
+
"transformer.h.9.mlp.w2.weight": "model-00003-of-00009.safetensors",
|
| 753 |
+
"transformer.ln_f.weight": "model-00008-of-00009.safetensors",
|
| 754 |
+
"transformer.wte.weight": "model-00001-of-00009.safetensors"
|
| 755 |
+
}
|
| 756 |
+
}
|
modeling_qwen.py
ADDED
|
@@ -0,0 +1,1426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Alibaba Cloud.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the license found in the
|
| 4 |
+
# LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
import copy
|
| 7 |
+
import importlib
|
| 8 |
+
import math
|
| 9 |
+
import shutil
|
| 10 |
+
import pathlib
|
| 11 |
+
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator, Dict
|
| 12 |
+
import os
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn.functional as F
|
| 16 |
+
import torch.utils.checkpoint
|
| 17 |
+
import warnings
|
| 18 |
+
from torch.cuda.amp import autocast
|
| 19 |
+
|
| 20 |
+
from torch.nn import CrossEntropyLoss
|
| 21 |
+
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
|
| 22 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
| 23 |
+
|
| 24 |
+
if TYPE_CHECKING:
|
| 25 |
+
from transformers.generation.streamers import BaseStreamer
|
| 26 |
+
from transformers.generation.utils import GenerateOutput
|
| 27 |
+
from transformers.modeling_outputs import (
|
| 28 |
+
BaseModelOutputWithPast,
|
| 29 |
+
CausalLMOutputWithPast,
|
| 30 |
+
)
|
| 31 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 32 |
+
from transformers.utils import logging
|
| 33 |
+
|
| 34 |
+
try:
|
| 35 |
+
from einops import rearrange
|
| 36 |
+
except ImportError:
|
| 37 |
+
rearrange = None
|
| 38 |
+
from torch import nn
|
| 39 |
+
|
| 40 |
+
SUPPORT_CUDA = torch.cuda.is_available()
|
| 41 |
+
SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
|
| 42 |
+
SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
|
| 43 |
+
SUPPORT_TORCH2 = hasattr(torch, '__version__') and int(torch.__version__.split(".")[0]) >= 2
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
from .configuration_qwen import QWenConfig
|
| 47 |
+
from .qwen_generation_utils import (
|
| 48 |
+
HistoryType,
|
| 49 |
+
make_context,
|
| 50 |
+
decode_tokens,
|
| 51 |
+
get_stop_words_ids,
|
| 52 |
+
StopWordsLogitsProcessor,
|
| 53 |
+
)
|
| 54 |
+
from .audio import AudioEncoder
|
| 55 |
+
|
| 56 |
+
logger = logging.get_logger(__name__)
|
| 57 |
+
|
| 58 |
+
_CHECKPOINT_FOR_DOC = "qwen"
|
| 59 |
+
_CONFIG_FOR_DOC = "QWenConfig"
|
| 60 |
+
|
| 61 |
+
QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
|
| 62 |
+
|
| 63 |
+
_ERROR_BAD_CHAT_FORMAT = """\
|
| 64 |
+
We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
|
| 65 |
+
If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
|
| 66 |
+
我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
|
| 67 |
+
如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
_SENTINEL = object()
|
| 71 |
+
_ERROR_STREAM_IN_CHAT = """\
|
| 72 |
+
Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
|
| 73 |
+
向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
|
| 74 |
+
"""
|
| 75 |
+
|
| 76 |
+
_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED = """\
|
| 77 |
+
We detect you have activated flash attention support, but running model computation on CPU. Please make sure that your input data has been placed on GPU. If you actually want to run CPU computation, please following the readme and set device_map="cpu" to disable flash attention when loading the model (calling AutoModelForCausalLM.from_pretrained).
|
| 78 |
+
检测到您的模型已激活了flash attention支持,但正在执行CPU运算任务。如使用flash attention,请您确认模型输入已经传到GPU上。如果您确认要执行CPU运算,请您在载入模型(调用AutoModelForCausalLM.from_pretrained)时,按照readme说法,指定device_map="cpu"以禁用flash attention。
|
| 79 |
+
"""
|
| 80 |
+
|
| 81 |
+
apply_rotary_emb_func = None
|
| 82 |
+
rms_norm = None
|
| 83 |
+
flash_attn_unpadded_func = None
|
| 84 |
+
|
| 85 |
+
def _import_flash_attn():
|
| 86 |
+
global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func
|
| 87 |
+
try:
|
| 88 |
+
from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
|
| 89 |
+
apply_rotary_emb_func = __apply_rotary_emb_func
|
| 90 |
+
except ImportError:
|
| 91 |
+
logger.warn(
|
| 92 |
+
"Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency "
|
| 93 |
+
"https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary"
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
try:
|
| 97 |
+
from flash_attn.ops.rms_norm import rms_norm as __rms_norm
|
| 98 |
+
rms_norm = __rms_norm
|
| 99 |
+
except ImportError:
|
| 100 |
+
logger.warn(
|
| 101 |
+
"Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency "
|
| 102 |
+
"https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm"
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
try:
|
| 106 |
+
import flash_attn
|
| 107 |
+
if not hasattr(flash_attn, '__version__'):
|
| 108 |
+
from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
|
| 109 |
+
else:
|
| 110 |
+
if int(flash_attn.__version__.split(".")[0]) >= 2:
|
| 111 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
|
| 112 |
+
else:
|
| 113 |
+
from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
|
| 114 |
+
flash_attn_unpadded_func = __flash_attn_unpadded_func
|
| 115 |
+
except ImportError:
|
| 116 |
+
logger.warn(
|
| 117 |
+
"Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
|
| 118 |
+
"https://github.com/Dao-AILab/flash-attention"
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
def quantize_cache_v(fdata, bits, qmax, qmin):
|
| 122 |
+
# b, s, head, h-dim->b, head, s, h-dim
|
| 123 |
+
qtype = torch.uint8
|
| 124 |
+
device = fdata.device
|
| 125 |
+
shape = fdata.shape
|
| 126 |
+
|
| 127 |
+
fdata_cal = torch.flatten(fdata, 2)
|
| 128 |
+
fmax = torch.amax(fdata_cal, dim=-1, keepdim=True)
|
| 129 |
+
fmin = torch.amin(fdata_cal, dim=-1, keepdim=True)
|
| 130 |
+
# Compute params
|
| 131 |
+
if qmax.device != fmax.device:
|
| 132 |
+
qmax = qmax.to(device)
|
| 133 |
+
qmin = qmin.to(device)
|
| 134 |
+
scale = (fmax - fmin) / (qmax - qmin)
|
| 135 |
+
zero = qmin - fmin / scale
|
| 136 |
+
scale = scale.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
|
| 137 |
+
zero = zero.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
|
| 138 |
+
# Quantize
|
| 139 |
+
res_data = fdata / scale + zero
|
| 140 |
+
qdata = torch.clamp(res_data, qmin, qmax).to(qtype)
|
| 141 |
+
return qdata.contiguous(), scale, zero
|
| 142 |
+
|
| 143 |
+
def dequantize_cache_torch(qdata, scale, zero):
|
| 144 |
+
data = scale * (qdata - zero)
|
| 145 |
+
return data
|
| 146 |
+
|
| 147 |
+
class FlashSelfAttention(torch.nn.Module):
|
| 148 |
+
def __init__(
|
| 149 |
+
self,
|
| 150 |
+
causal=False,
|
| 151 |
+
softmax_scale=None,
|
| 152 |
+
attention_dropout=0.0,
|
| 153 |
+
):
|
| 154 |
+
super().__init__()
|
| 155 |
+
assert flash_attn_unpadded_func is not None, (
|
| 156 |
+
"Please install FlashAttention first, " "e.g., with pip install flash-attn"
|
| 157 |
+
)
|
| 158 |
+
assert (
|
| 159 |
+
rearrange is not None
|
| 160 |
+
), "Please install einops first, e.g., with pip install einops"
|
| 161 |
+
self.causal = causal
|
| 162 |
+
self.softmax_scale = softmax_scale
|
| 163 |
+
self.dropout_p = attention_dropout
|
| 164 |
+
|
| 165 |
+
def unpad_input(self, hidden_states, attention_mask):
|
| 166 |
+
valid_mask = attention_mask.squeeze(1).squeeze(1).eq(0)
|
| 167 |
+
seqlens_in_batch = valid_mask.sum(dim=-1, dtype=torch.int32)
|
| 168 |
+
indices = torch.nonzero(valid_mask.flatten(), as_tuple=False).flatten()
|
| 169 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 170 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
| 171 |
+
hidden_states = hidden_states[indices]
|
| 172 |
+
return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
|
| 173 |
+
|
| 174 |
+
def pad_input(self, hidden_states, indices, batch, seqlen):
|
| 175 |
+
output = torch.zeros(batch * seqlen, *hidden_states.shape[1:], device=hidden_states.device,
|
| 176 |
+
dtype=hidden_states.dtype)
|
| 177 |
+
output[indices] = hidden_states
|
| 178 |
+
return rearrange(output, '(b s) ... -> b s ...', b=batch)
|
| 179 |
+
|
| 180 |
+
def forward(self, q, k, v, attention_mask=None):
|
| 181 |
+
assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
|
| 182 |
+
assert all((i.is_cuda for i in (q, k, v)))
|
| 183 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
| 184 |
+
seqlen_k = k.shape[1]
|
| 185 |
+
seqlen_out = seqlen_q
|
| 186 |
+
|
| 187 |
+
q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
|
| 188 |
+
cu_seqlens_q = torch.arange(
|
| 189 |
+
0,
|
| 190 |
+
(batch_size + 1) * seqlen_q,
|
| 191 |
+
step=seqlen_q,
|
| 192 |
+
dtype=torch.int32,
|
| 193 |
+
device=q.device,
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
if batch_size > 1 and attention_mask is not None:
|
| 197 |
+
k, indices_k, cu_seqlens_k, seqlen_k = self.unpad_input(k, attention_mask)
|
| 198 |
+
if q.size(0) == v.size(0):
|
| 199 |
+
q = q[indices_k]
|
| 200 |
+
cu_seqlens_q = cu_seqlens_k
|
| 201 |
+
seqlen_q = seqlen_k
|
| 202 |
+
v = v[indices_k]
|
| 203 |
+
else:
|
| 204 |
+
cu_seqlens_k = torch.arange(
|
| 205 |
+
0,
|
| 206 |
+
(batch_size + 1) * seqlen_k,
|
| 207 |
+
step=seqlen_k,
|
| 208 |
+
dtype=torch.int32,
|
| 209 |
+
device=q.device,
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
if self.training:
|
| 213 |
+
assert seqlen_k == seqlen_q
|
| 214 |
+
is_causal = self.causal
|
| 215 |
+
dropout_p = self.dropout_p
|
| 216 |
+
else:
|
| 217 |
+
is_causal = seqlen_q == seqlen_k
|
| 218 |
+
dropout_p = 0
|
| 219 |
+
|
| 220 |
+
output = flash_attn_unpadded_func(
|
| 221 |
+
q,
|
| 222 |
+
k,
|
| 223 |
+
v,
|
| 224 |
+
cu_seqlens_q,
|
| 225 |
+
cu_seqlens_k,
|
| 226 |
+
seqlen_q,
|
| 227 |
+
seqlen_k,
|
| 228 |
+
dropout_p,
|
| 229 |
+
softmax_scale=self.softmax_scale,
|
| 230 |
+
causal=is_causal,
|
| 231 |
+
)
|
| 232 |
+
if batch_size > 1 and attention_mask is not None and seqlen_q == seqlen_k:
|
| 233 |
+
output = self.pad_input(output, indices_k, batch_size, seqlen_out)
|
| 234 |
+
else:
|
| 235 |
+
new_shape = (batch_size, output.shape[0] // batch_size) + output.shape[1:]
|
| 236 |
+
output = output.view(new_shape)
|
| 237 |
+
return output
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
class QWenAttention(nn.Module):
|
| 241 |
+
def __init__(self, config):
|
| 242 |
+
super().__init__()
|
| 243 |
+
|
| 244 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
|
| 245 |
+
self.seq_length = config.seq_length
|
| 246 |
+
|
| 247 |
+
self.hidden_size = config.hidden_size
|
| 248 |
+
self.split_size = config.hidden_size
|
| 249 |
+
self.num_heads = config.num_attention_heads
|
| 250 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 251 |
+
|
| 252 |
+
self.use_flash_attn = config.use_flash_attn
|
| 253 |
+
self.scale_attn_weights = True
|
| 254 |
+
|
| 255 |
+
self.projection_size = config.kv_channels * config.num_attention_heads
|
| 256 |
+
|
| 257 |
+
assert self.projection_size % config.num_attention_heads == 0
|
| 258 |
+
self.hidden_size_per_attention_head = (
|
| 259 |
+
self.projection_size // config.num_attention_heads
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
|
| 263 |
+
|
| 264 |
+
self.c_proj = nn.Linear(
|
| 265 |
+
config.hidden_size, self.projection_size, bias=not config.no_bias
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
self.is_fp32 = not (config.bf16 or config.fp16)
|
| 269 |
+
if (
|
| 270 |
+
self.use_flash_attn
|
| 271 |
+
and flash_attn_unpadded_func is not None
|
| 272 |
+
and not self.is_fp32
|
| 273 |
+
):
|
| 274 |
+
self.core_attention_flash = FlashSelfAttention(
|
| 275 |
+
causal=True, attention_dropout=config.attn_dropout_prob
|
| 276 |
+
)
|
| 277 |
+
self.bf16 = config.bf16
|
| 278 |
+
|
| 279 |
+
self.use_dynamic_ntk = config.use_dynamic_ntk
|
| 280 |
+
self.use_logn_attn = config.use_logn_attn
|
| 281 |
+
|
| 282 |
+
logn_list = [
|
| 283 |
+
math.log(i, self.seq_length) if i > self.seq_length else 1
|
| 284 |
+
for i in range(1, 32768)
|
| 285 |
+
]
|
| 286 |
+
logn_tensor = torch.tensor(logn_list)[None, :, None, None]
|
| 287 |
+
self.register_buffer("logn_tensor", logn_tensor, persistent=False)
|
| 288 |
+
|
| 289 |
+
self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
|
| 290 |
+
self.softmax_in_fp32 = config.softmax_in_fp32 if hasattr(config, 'softmax_in_fp32') else False
|
| 291 |
+
self.use_cache_quantization = config.use_cache_quantization if hasattr(config, 'use_cache_quantization') else False
|
| 292 |
+
self.use_cache_kernel = config.use_cache_kernel if hasattr(config,'use_cache_kernel') else False
|
| 293 |
+
cache_dtype = torch.float
|
| 294 |
+
if self.bf16:
|
| 295 |
+
cache_dtype=torch.bfloat16
|
| 296 |
+
elif config.fp16:
|
| 297 |
+
cache_dtype = torch.float16
|
| 298 |
+
self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
|
| 299 |
+
self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
|
| 300 |
+
|
| 301 |
+
if config.use_cache_quantization and config.use_cache_kernel:
|
| 302 |
+
# pre check if the support files existing
|
| 303 |
+
module_root = pathlib.Path(__file__).parent
|
| 304 |
+
src_files = ("cache_autogptq_cuda_256.cpp", "cache_autogptq_cuda_kernel_256.cu")
|
| 305 |
+
if any(not (module_root/src).is_file() for src in src_files):
|
| 306 |
+
warnings.warn("KV cache kernel source files (.cpp and .cu) not found.")
|
| 307 |
+
self.cache_kernels = None
|
| 308 |
+
else:
|
| 309 |
+
try:
|
| 310 |
+
from .cpp_kernels import cache_autogptq_cuda_256
|
| 311 |
+
self.cache_kernels = cache_autogptq_cuda_256
|
| 312 |
+
except ImportError:
|
| 313 |
+
warnings.warn("Failed to import KV cache kernels.")
|
| 314 |
+
self.cache_kernels = None
|
| 315 |
+
|
| 316 |
+
def _attn(self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None):
|
| 317 |
+
device = query.device
|
| 318 |
+
if self.use_cache_quantization:
|
| 319 |
+
qk, qk_scale, qk_zero = key
|
| 320 |
+
if self.use_cache_kernel and self.cache_kernels is not None:
|
| 321 |
+
shape = query.shape[:-1] + (qk.shape[-2],)
|
| 322 |
+
attn_weights = torch.zeros(shape, dtype=torch.float16, device=device)
|
| 323 |
+
self.cache_kernels.vecquant8matmul_batched_faster_old(
|
| 324 |
+
query.contiguous() if query.dtype == torch.float16 else query.to(torch.float16).contiguous(),
|
| 325 |
+
qk.transpose(-1, -2).contiguous(),
|
| 326 |
+
attn_weights,
|
| 327 |
+
qk_scale.contiguous() if qk_scale.dtype == torch.float16 else qk_scale.to(torch.float16).contiguous(),
|
| 328 |
+
qk_zero.contiguous()if qk_zero.dtype == torch.float16 else qk_zero.to(torch.float16).contiguous())
|
| 329 |
+
# attn_weights = attn_weights.to(query.dtype).contiguous()
|
| 330 |
+
else:
|
| 331 |
+
key = dequantize_cache_torch(qk, qk_scale, qk_zero)
|
| 332 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
| 333 |
+
else:
|
| 334 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
| 335 |
+
|
| 336 |
+
if self.scale_attn_weights:
|
| 337 |
+
if self.use_cache_quantization:
|
| 338 |
+
size_temp = value[0].size(-1)
|
| 339 |
+
else:
|
| 340 |
+
size_temp = value.size(-1)
|
| 341 |
+
attn_weights = attn_weights / torch.full(
|
| 342 |
+
[],
|
| 343 |
+
size_temp ** 0.5,
|
| 344 |
+
dtype=attn_weights.dtype,
|
| 345 |
+
device=attn_weights.device,
|
| 346 |
+
)
|
| 347 |
+
if self.use_cache_quantization:
|
| 348 |
+
query_length, key_length = query.size(-2), key[0].size(-2)
|
| 349 |
+
else:
|
| 350 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
| 351 |
+
causal_mask = registered_causal_mask[
|
| 352 |
+
:, :, key_length - query_length : key_length, :key_length
|
| 353 |
+
]
|
| 354 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
| 355 |
+
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
|
| 356 |
+
attn_weights.device
|
| 357 |
+
)
|
| 358 |
+
attn_weights = torch.where(
|
| 359 |
+
causal_mask, attn_weights.to(attn_weights.dtype), mask_value
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
if attention_mask is not None:
|
| 363 |
+
attn_weights = attn_weights + attention_mask
|
| 364 |
+
|
| 365 |
+
if self.softmax_in_fp32:
|
| 366 |
+
attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1)
|
| 367 |
+
else:
|
| 368 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 369 |
+
|
| 370 |
+
attn_weights = attn_weights.type(query.dtype)
|
| 371 |
+
attn_weights = self.attn_dropout(attn_weights)
|
| 372 |
+
|
| 373 |
+
if head_mask is not None:
|
| 374 |
+
attn_weights = attn_weights * head_mask
|
| 375 |
+
|
| 376 |
+
if self.use_cache_quantization:
|
| 377 |
+
qv, qv_scale, qv_zero = value
|
| 378 |
+
if self.use_cache_kernel and self.cache_kernels is not None:
|
| 379 |
+
shape = attn_weights.shape[:-1] + (query.shape[-1],)
|
| 380 |
+
attn_output = torch.zeros(shape, dtype=torch.float16, device=device)
|
| 381 |
+
self.cache_kernels.vecquant8matmul_batched_column_compression_faster_old(
|
| 382 |
+
attn_weights.contiguous() if attn_weights.dtype == torch.float16 else attn_weights.to(torch.float16).contiguous(),
|
| 383 |
+
qv.contiguous(), # dtype: int32
|
| 384 |
+
attn_output,
|
| 385 |
+
qv_scale.contiguous() if qv_scale.dtype == torch.float16 else qv_scale.to(torch.float16).contiguous(),
|
| 386 |
+
qv_zero.contiguous() if qv_zero.dtype == torch.float16 else qv_zero.to(torch.float16).contiguous())
|
| 387 |
+
if attn_output.dtype != query.dtype:
|
| 388 |
+
attn_output = attn_output.to(query.dtype)
|
| 389 |
+
attn_weights = attn_weights.to(query.dtype)
|
| 390 |
+
else:
|
| 391 |
+
value = dequantize_cache_torch(qv, qv_scale, qv_zero)
|
| 392 |
+
attn_output = torch.matmul(attn_weights, value)
|
| 393 |
+
else:
|
| 394 |
+
attn_output = torch.matmul(attn_weights, value)
|
| 395 |
+
|
| 396 |
+
attn_output = attn_output.transpose(1, 2)
|
| 397 |
+
|
| 398 |
+
return attn_output, attn_weights
|
| 399 |
+
|
| 400 |
+
def _split_heads(self, tensor, num_heads, attn_head_size):
|
| 401 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
| 402 |
+
tensor = tensor.view(new_shape)
|
| 403 |
+
return tensor
|
| 404 |
+
|
| 405 |
+
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
| 406 |
+
tensor = tensor.contiguous()
|
| 407 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
| 408 |
+
return tensor.view(new_shape)
|
| 409 |
+
|
| 410 |
+
def forward(
|
| 411 |
+
self,
|
| 412 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 413 |
+
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
| 414 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 415 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 416 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 417 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 418 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 419 |
+
output_attentions: Optional[bool] = False,
|
| 420 |
+
use_cache: Optional[bool] = False,
|
| 421 |
+
):
|
| 422 |
+
mixed_x_layer = self.c_attn(hidden_states)
|
| 423 |
+
|
| 424 |
+
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
|
| 425 |
+
|
| 426 |
+
query = self._split_heads(query, self.num_heads, self.head_dim)
|
| 427 |
+
key = self._split_heads(key, self.num_heads, self.head_dim)
|
| 428 |
+
value = self._split_heads(value, self.num_heads, self.head_dim)
|
| 429 |
+
|
| 430 |
+
if rotary_pos_emb_list is not None:
|
| 431 |
+
cur_len = query.shape[1]
|
| 432 |
+
if len(rotary_pos_emb_list) == 1:
|
| 433 |
+
rotary_pos_emb = rotary_pos_emb_list[0]
|
| 434 |
+
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
|
| 435 |
+
rotary_pos_emb = (rotary_pos_emb,) * 2
|
| 436 |
+
q_pos_emb, k_pos_emb = rotary_pos_emb
|
| 437 |
+
# Slice the pos emb for current inference
|
| 438 |
+
query = apply_rotary_pos_emb(query, q_pos_emb)
|
| 439 |
+
key = apply_rotary_pos_emb(key, k_pos_emb)
|
| 440 |
+
else:
|
| 441 |
+
query_list = []
|
| 442 |
+
key_list = []
|
| 443 |
+
for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
|
| 444 |
+
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
|
| 445 |
+
rotary_pos_emb = (rotary_pos_emb,) * 2
|
| 446 |
+
q_pos_emb, k_pos_emb = rotary_pos_emb
|
| 447 |
+
# Slice the pos emb for current inference
|
| 448 |
+
query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
|
| 449 |
+
key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
|
| 450 |
+
query = torch.cat(query_list, dim=0)
|
| 451 |
+
key = torch.cat(key_list, dim=0)
|
| 452 |
+
|
| 453 |
+
if self.use_cache_quantization:
|
| 454 |
+
key = quantize_cache_v(key.permute(0, 2, 1, 3),
|
| 455 |
+
bits=8,
|
| 456 |
+
qmin=self.cache_qmin,
|
| 457 |
+
qmax=self.cache_qmax)
|
| 458 |
+
value = quantize_cache_v(value.permute(0, 2, 1, 3),
|
| 459 |
+
bits=8,
|
| 460 |
+
qmin=self.cache_qmin,
|
| 461 |
+
qmax=self.cache_qmax)
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
if layer_past is not None:
|
| 465 |
+
past_key, past_value = layer_past[0], layer_past[1]
|
| 466 |
+
if self.use_cache_quantization:
|
| 467 |
+
# use_cache_quantization:
|
| 468 |
+
# present=((q_key,key_scale,key_zero_point),
|
| 469 |
+
# (q_value,value_scale,value_zero_point))
|
| 470 |
+
key = (torch.cat((past_key[0], key[0]), dim=2),
|
| 471 |
+
torch.cat((past_key[1], key[1]), dim=2),
|
| 472 |
+
torch.cat((past_key[2], key[2]), dim=2))
|
| 473 |
+
value = (torch.cat((past_value[0], value[0]), dim=2),
|
| 474 |
+
torch.cat((past_value[1], value[1]), dim=2),
|
| 475 |
+
torch.cat((past_value[2], value[2]), dim=2))
|
| 476 |
+
else:
|
| 477 |
+
# not use_cache_quantization:
|
| 478 |
+
# present=(key,value)
|
| 479 |
+
key = torch.cat((past_key, key), dim=1)
|
| 480 |
+
value = torch.cat((past_value, value), dim=1)
|
| 481 |
+
|
| 482 |
+
if use_cache:
|
| 483 |
+
present = (key, value)
|
| 484 |
+
else:
|
| 485 |
+
present = None
|
| 486 |
+
|
| 487 |
+
if self.use_logn_attn and not self.training:
|
| 488 |
+
if self.use_cache_quantization:
|
| 489 |
+
seq_start = key[0].size(2) - query.size(1)
|
| 490 |
+
seq_end = key[0].size(2)
|
| 491 |
+
else:
|
| 492 |
+
seq_start = key.size(1) - query.size(1)
|
| 493 |
+
seq_end = key.size(1)
|
| 494 |
+
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].type_as(query)
|
| 495 |
+
query = query * logn_tensor.expand_as(query)
|
| 496 |
+
|
| 497 |
+
if (
|
| 498 |
+
self.use_flash_attn
|
| 499 |
+
and flash_attn_unpadded_func is not None
|
| 500 |
+
and not self.is_fp32
|
| 501 |
+
and query.is_cuda
|
| 502 |
+
):
|
| 503 |
+
q, k, v = query, key, value
|
| 504 |
+
attn_output = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
|
| 505 |
+
else:
|
| 506 |
+
registered_causal_mask = torch.tril(
|
| 507 |
+
torch.ones((key.size(1), key.size(1)), dtype=torch.bool, device=key.device)
|
| 508 |
+
).view(1, 1, key.size(1), key.size(1))
|
| 509 |
+
query = query.permute(0, 2, 1, 3)
|
| 510 |
+
if not self.use_cache_quantization:
|
| 511 |
+
key = key.permute(0, 2, 1, 3)
|
| 512 |
+
value = value.permute(0, 2, 1, 3)
|
| 513 |
+
if (
|
| 514 |
+
registered_causal_mask is None
|
| 515 |
+
and self.use_flash_attn
|
| 516 |
+
and flash_attn_unpadded_func is not None
|
| 517 |
+
and not self.is_fp32
|
| 518 |
+
and not query.is_cuda
|
| 519 |
+
):
|
| 520 |
+
raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
|
| 521 |
+
|
| 522 |
+
if not self.use_cache_quantization and SUPPORT_TORCH2:
|
| 523 |
+
causal_mask = registered_causal_mask[
|
| 524 |
+
:, :, key.size(-2) - query.size(-2): key.size(-2), :key.size(-2)
|
| 525 |
+
]
|
| 526 |
+
if attention_mask is not None:
|
| 527 |
+
attention_mask = attention_mask.expand(
|
| 528 |
+
-1, -1, causal_mask.size(2), -1
|
| 529 |
+
).masked_fill(~causal_mask, torch.finfo(query.dtype).min)
|
| 530 |
+
else:
|
| 531 |
+
attention_mask = causal_mask
|
| 532 |
+
attn_output = F.scaled_dot_product_attention(
|
| 533 |
+
query, key, value, attn_mask=attention_mask
|
| 534 |
+
).transpose(1, 2)
|
| 535 |
+
attn_weight = None
|
| 536 |
+
else:
|
| 537 |
+
attn_output, attn_weight = self._attn(
|
| 538 |
+
query, key, value, registered_causal_mask, attention_mask, head_mask
|
| 539 |
+
)
|
| 540 |
+
context_layer = self._merge_heads(
|
| 541 |
+
attn_output, self.num_heads, self.head_dim
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
attn_output = self.c_proj(context_layer)
|
| 545 |
+
|
| 546 |
+
outputs = (attn_output, present)
|
| 547 |
+
if output_attentions:
|
| 548 |
+
if (
|
| 549 |
+
self.use_flash_attn
|
| 550 |
+
and flash_attn_unpadded_func is not None
|
| 551 |
+
and not self.is_fp32
|
| 552 |
+
):
|
| 553 |
+
raise ValueError("Cannot output attentions while using flash-attn")
|
| 554 |
+
else:
|
| 555 |
+
outputs += (attn_weight,)
|
| 556 |
+
|
| 557 |
+
return outputs
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
class QWenMLP(nn.Module):
|
| 561 |
+
def __init__(self, config):
|
| 562 |
+
super().__init__()
|
| 563 |
+
self.w1 = nn.Linear(
|
| 564 |
+
config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
|
| 565 |
+
)
|
| 566 |
+
self.w2 = nn.Linear(
|
| 567 |
+
config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
|
| 568 |
+
)
|
| 569 |
+
ff_dim_in = config.intermediate_size // 2
|
| 570 |
+
self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
|
| 571 |
+
|
| 572 |
+
def forward(self, hidden_states):
|
| 573 |
+
a1 = self.w1(hidden_states)
|
| 574 |
+
a2 = self.w2(hidden_states)
|
| 575 |
+
intermediate_parallel = a1 * F.silu(a2)
|
| 576 |
+
output = self.c_proj(intermediate_parallel)
|
| 577 |
+
return output
|
| 578 |
+
|
| 579 |
+
class QWenBlock(nn.Module):
|
| 580 |
+
def __init__(self, config):
|
| 581 |
+
super().__init__()
|
| 582 |
+
hidden_size = config.hidden_size
|
| 583 |
+
self.bf16 = config.bf16
|
| 584 |
+
|
| 585 |
+
self.ln_1 = RMSNorm(
|
| 586 |
+
hidden_size,
|
| 587 |
+
eps=config.layer_norm_epsilon,
|
| 588 |
+
)
|
| 589 |
+
self.attn = QWenAttention(config)
|
| 590 |
+
self.ln_2 = RMSNorm(
|
| 591 |
+
hidden_size,
|
| 592 |
+
eps=config.layer_norm_epsilon,
|
| 593 |
+
)
|
| 594 |
+
|
| 595 |
+
self.mlp = QWenMLP(config)
|
| 596 |
+
|
| 597 |
+
def forward(
|
| 598 |
+
self,
|
| 599 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 600 |
+
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
| 601 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 602 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 603 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 604 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 605 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 606 |
+
use_cache: Optional[bool] = False,
|
| 607 |
+
output_attentions: Optional[bool] = False,
|
| 608 |
+
):
|
| 609 |
+
layernorm_output = self.ln_1(hidden_states)
|
| 610 |
+
|
| 611 |
+
attn_outputs = self.attn(
|
| 612 |
+
layernorm_output,
|
| 613 |
+
rotary_pos_emb_list,
|
| 614 |
+
layer_past=layer_past,
|
| 615 |
+
attention_mask=attention_mask,
|
| 616 |
+
head_mask=head_mask,
|
| 617 |
+
use_cache=use_cache,
|
| 618 |
+
output_attentions=output_attentions,
|
| 619 |
+
)
|
| 620 |
+
attn_output = attn_outputs[0]
|
| 621 |
+
|
| 622 |
+
outputs = attn_outputs[1:]
|
| 623 |
+
|
| 624 |
+
residual = hidden_states
|
| 625 |
+
layernorm_input = attn_output + residual
|
| 626 |
+
|
| 627 |
+
layernorm_output = self.ln_2(layernorm_input)
|
| 628 |
+
|
| 629 |
+
residual = layernorm_input
|
| 630 |
+
mlp_output = self.mlp(layernorm_output)
|
| 631 |
+
hidden_states = residual + mlp_output
|
| 632 |
+
|
| 633 |
+
if use_cache:
|
| 634 |
+
outputs = (hidden_states,) + outputs
|
| 635 |
+
else:
|
| 636 |
+
outputs = (hidden_states,) + outputs[1:]
|
| 637 |
+
|
| 638 |
+
return outputs
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
class QWenPreTrainedModel(PreTrainedModel):
|
| 642 |
+
config_class = QWenConfig
|
| 643 |
+
base_model_prefix = "transformer"
|
| 644 |
+
is_parallelizable = False
|
| 645 |
+
supports_gradient_checkpointing = True
|
| 646 |
+
_no_split_modules = ["QWenBlock"]
|
| 647 |
+
|
| 648 |
+
def __init__(self, *inputs, **kwargs):
|
| 649 |
+
super().__init__(*inputs, **kwargs)
|
| 650 |
+
|
| 651 |
+
def _init_weights(self, module):
|
| 652 |
+
"""Initialize the weights."""
|
| 653 |
+
if isinstance(module, nn.Linear):
|
| 654 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 655 |
+
if module.bias is not None:
|
| 656 |
+
module.bias.data.zero_()
|
| 657 |
+
elif isinstance(module, nn.Embedding):
|
| 658 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 659 |
+
if module.padding_idx is not None:
|
| 660 |
+
module.weight.data[module.padding_idx].zero_()
|
| 661 |
+
elif isinstance(module, RMSNorm):
|
| 662 |
+
module.weight.data.fill_(1.0)
|
| 663 |
+
|
| 664 |
+
for name, p in module.named_parameters():
|
| 665 |
+
if name == "c_proj.weight":
|
| 666 |
+
p.data.normal_(
|
| 667 |
+
mean=0.0,
|
| 668 |
+
std=(
|
| 669 |
+
self.config.initializer_range
|
| 670 |
+
/ math.sqrt(2 * self.config.num_hidden_layers)
|
| 671 |
+
),
|
| 672 |
+
)
|
| 673 |
+
|
| 674 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 675 |
+
if isinstance(module, QWenModel):
|
| 676 |
+
module.gradient_checkpointing = value
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
class QWenModel(QWenPreTrainedModel):
|
| 680 |
+
_keys_to_ignore_on_load_missing = ["attn.masked_bias"]
|
| 681 |
+
|
| 682 |
+
def __init__(self, config):
|
| 683 |
+
super().__init__(config)
|
| 684 |
+
self.vocab_size = config.vocab_size
|
| 685 |
+
self.num_hidden_layers = config.num_hidden_layers
|
| 686 |
+
self.embed_dim = config.hidden_size
|
| 687 |
+
self.use_cache_quantization = self.config.use_cache_quantization if hasattr(self.config, 'use_cache_quantization') else False
|
| 688 |
+
|
| 689 |
+
self.gradient_checkpointing = False
|
| 690 |
+
self.use_dynamic_ntk = config.use_dynamic_ntk
|
| 691 |
+
self.seq_length = config.seq_length
|
| 692 |
+
|
| 693 |
+
self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
|
| 694 |
+
|
| 695 |
+
self.drop = nn.Dropout(config.emb_dropout_prob)
|
| 696 |
+
|
| 697 |
+
if config.rotary_pct == 1.0:
|
| 698 |
+
self.rotary_ndims = None
|
| 699 |
+
else:
|
| 700 |
+
assert config.rotary_pct < 1
|
| 701 |
+
self.rotary_ndims = int(
|
| 702 |
+
config.kv_channels * config.rotary_pct
|
| 703 |
+
)
|
| 704 |
+
dim = (
|
| 705 |
+
self.rotary_ndims
|
| 706 |
+
if self.rotary_ndims is not None
|
| 707 |
+
else config.kv_channels
|
| 708 |
+
)
|
| 709 |
+
self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
|
| 710 |
+
|
| 711 |
+
self.use_flash_attn = config.use_flash_attn
|
| 712 |
+
self.is_fp32 = not (config.bf16 or config.fp16)
|
| 713 |
+
|
| 714 |
+
self.h = nn.ModuleList(
|
| 715 |
+
[
|
| 716 |
+
QWenBlock(
|
| 717 |
+
config
|
| 718 |
+
)
|
| 719 |
+
for i in range(config.num_hidden_layers)
|
| 720 |
+
]
|
| 721 |
+
)
|
| 722 |
+
self.ln_f = RMSNorm(
|
| 723 |
+
self.embed_dim,
|
| 724 |
+
eps=config.layer_norm_epsilon,
|
| 725 |
+
)
|
| 726 |
+
|
| 727 |
+
self.audio = AudioEncoder(**config.audio)
|
| 728 |
+
|
| 729 |
+
self.post_init()
|
| 730 |
+
|
| 731 |
+
def get_input_embeddings(self):
|
| 732 |
+
return self.wte
|
| 733 |
+
|
| 734 |
+
def set_input_embeddings(self, new_embeddings):
|
| 735 |
+
self.wte = new_embeddings
|
| 736 |
+
|
| 737 |
+
def get_ntk_alpha(self, true_seq_len):
|
| 738 |
+
context_value = math.log(true_seq_len / self.seq_length, 2) + 1
|
| 739 |
+
ntk_alpha = 2 ** math.ceil(context_value) - 1
|
| 740 |
+
ntk_alpha = max(ntk_alpha, 1)
|
| 741 |
+
return ntk_alpha
|
| 742 |
+
|
| 743 |
+
def forward(
|
| 744 |
+
self,
|
| 745 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 746 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 747 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 748 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 749 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 750 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 751 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 752 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 753 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 754 |
+
use_cache: Optional[bool] = None,
|
| 755 |
+
output_attentions: Optional[bool] = None,
|
| 756 |
+
output_hidden_states: Optional[bool] = None,
|
| 757 |
+
return_dict: Optional[bool] = None,
|
| 758 |
+
audio_info: Dict = None
|
| 759 |
+
):
|
| 760 |
+
if past_key_values is None and torch.any(input_ids == self.config.audio['audio_start_id']):
|
| 761 |
+
bos_pos = torch.where(input_ids == self.config.audio['audio_start_id'])
|
| 762 |
+
eos_pos = torch.where(input_ids == self.config.audio['audio_start_id'] + 1)
|
| 763 |
+
assert (bos_pos[0] == eos_pos[0]).all()
|
| 764 |
+
audio_pos = torch.stack((bos_pos[0], bos_pos[1], eos_pos[1]), dim=1)
|
| 765 |
+
if isinstance(audio_info, Dict):
|
| 766 |
+
audios = audio_info["input_audios"]
|
| 767 |
+
audio_span_tokens = audio_info["audio_span_tokens"]
|
| 768 |
+
input_audio_lengths = audio_info["input_audio_lengths"]
|
| 769 |
+
audios = self.audio.encode(audios,input_audio_lengths, audio_span_tokens)
|
| 770 |
+
else:
|
| 771 |
+
audios = torch.concat([_["input_audios"] for _ in audio_info])
|
| 772 |
+
input_audio_lengths = torch.concat([_["input_audio_lengths"] for _ in audio_info])
|
| 773 |
+
audio_span_tokens = []
|
| 774 |
+
for _ in audio_info:
|
| 775 |
+
audio_span_tokens.extend(_['audio_span_tokens'])
|
| 776 |
+
audios = self.audio.encode(audios, input_audio_lengths, audio_span_tokens)
|
| 777 |
+
|
| 778 |
+
else:
|
| 779 |
+
audios = None
|
| 780 |
+
|
| 781 |
+
output_attentions = (
|
| 782 |
+
output_attentions
|
| 783 |
+
if output_attentions is not None
|
| 784 |
+
else self.config.output_attentions
|
| 785 |
+
)
|
| 786 |
+
output_hidden_states = (
|
| 787 |
+
output_hidden_states
|
| 788 |
+
if output_hidden_states is not None
|
| 789 |
+
else self.config.output_hidden_states
|
| 790 |
+
)
|
| 791 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 792 |
+
return_dict = (
|
| 793 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 794 |
+
)
|
| 795 |
+
|
| 796 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 797 |
+
raise ValueError(
|
| 798 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
| 799 |
+
)
|
| 800 |
+
elif input_ids is not None:
|
| 801 |
+
input_shape = input_ids.size()
|
| 802 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 803 |
+
batch_size = input_ids.shape[0]
|
| 804 |
+
elif inputs_embeds is not None:
|
| 805 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 806 |
+
batch_size = inputs_embeds.shape[0]
|
| 807 |
+
else:
|
| 808 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 809 |
+
|
| 810 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 811 |
+
|
| 812 |
+
if token_type_ids is not None:
|
| 813 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
| 814 |
+
if position_ids is not None:
|
| 815 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
| 816 |
+
|
| 817 |
+
if past_key_values is None:
|
| 818 |
+
past_length = 0
|
| 819 |
+
past_key_values = tuple([None] * len(self.h))
|
| 820 |
+
else:
|
| 821 |
+
if self.use_cache_quantization:
|
| 822 |
+
past_length = past_key_values[0][0][0].size(2)
|
| 823 |
+
else:
|
| 824 |
+
past_length = past_key_values[0][0].size(-2)
|
| 825 |
+
if position_ids is None:
|
| 826 |
+
position_ids = torch.arange(
|
| 827 |
+
past_length,
|
| 828 |
+
input_shape[-1] + past_length,
|
| 829 |
+
dtype=torch.long,
|
| 830 |
+
device=device,
|
| 831 |
+
)
|
| 832 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
| 833 |
+
|
| 834 |
+
if attention_mask is not None:
|
| 835 |
+
if batch_size <= 0:
|
| 836 |
+
raise ValueError("batch_size has to be defined and > 0")
|
| 837 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
| 838 |
+
attention_mask = attention_mask[:, None, None, :]
|
| 839 |
+
attention_mask = attention_mask.to(dtype=self.dtype)
|
| 840 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
| 841 |
+
|
| 842 |
+
encoder_attention_mask = None
|
| 843 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 844 |
+
|
| 845 |
+
if inputs_embeds is None:
|
| 846 |
+
inputs_embeds = self.wte(input_ids)
|
| 847 |
+
hidden_states = inputs_embeds
|
| 848 |
+
|
| 849 |
+
kv_seq_len = hidden_states.size()[1]
|
| 850 |
+
if past_key_values[0] is not None:
|
| 851 |
+
# past key values[0][0] shape: bs * seq_len * head_num * dim
|
| 852 |
+
if self.use_cache_quantization:
|
| 853 |
+
kv_seq_len += past_key_values[0][0][0].shape[2]
|
| 854 |
+
else:
|
| 855 |
+
kv_seq_len += past_key_values[0][0].shape[1]
|
| 856 |
+
|
| 857 |
+
if self.training or not self.use_dynamic_ntk:
|
| 858 |
+
ntk_alpha_list = [1.0]
|
| 859 |
+
elif kv_seq_len != hidden_states.size()[1]:
|
| 860 |
+
ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list
|
| 861 |
+
else:
|
| 862 |
+
ntk_alpha_list = []
|
| 863 |
+
if attention_mask is not None and kv_seq_len > self.seq_length:
|
| 864 |
+
true_seq_lens = attention_mask.squeeze(1).squeeze(1).eq(0).sum(dim=-1, dtype=torch.int32)
|
| 865 |
+
for i in range(hidden_states.size()[0]):
|
| 866 |
+
true_seq_len = true_seq_lens[i].item()
|
| 867 |
+
ntk_alpha = self.get_ntk_alpha(true_seq_len)
|
| 868 |
+
ntk_alpha_list.append(ntk_alpha)
|
| 869 |
+
else:
|
| 870 |
+
ntk_alpha = self.get_ntk_alpha(kv_seq_len)
|
| 871 |
+
ntk_alpha_list.append(ntk_alpha)
|
| 872 |
+
self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
|
| 873 |
+
rotary_pos_emb_list = [
|
| 874 |
+
self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) for ntk_alpha in ntk_alpha_list
|
| 875 |
+
]
|
| 876 |
+
|
| 877 |
+
hidden_states = self.drop(hidden_states)
|
| 878 |
+
if audios is not None:
|
| 879 |
+
for idx, (i, a, b) in enumerate(audio_pos):
|
| 880 |
+
hidden_states[i][a : b+1] = audios[idx]
|
| 881 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
| 882 |
+
|
| 883 |
+
if self.gradient_checkpointing and self.training:
|
| 884 |
+
if use_cache:
|
| 885 |
+
logger.warning_once(
|
| 886 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 887 |
+
)
|
| 888 |
+
use_cache = False
|
| 889 |
+
|
| 890 |
+
presents = () if use_cache else None
|
| 891 |
+
all_self_attentions = () if output_attentions else None
|
| 892 |
+
all_hidden_states = () if output_hidden_states else None
|
| 893 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
| 894 |
+
|
| 895 |
+
if output_hidden_states:
|
| 896 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 897 |
+
|
| 898 |
+
if self.gradient_checkpointing and self.training:
|
| 899 |
+
|
| 900 |
+
def create_custom_forward(module):
|
| 901 |
+
def custom_forward(*inputs):
|
| 902 |
+
# None for past_key_value
|
| 903 |
+
return module(*inputs, use_cache, output_attentions)
|
| 904 |
+
|
| 905 |
+
return custom_forward
|
| 906 |
+
|
| 907 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
| 908 |
+
create_custom_forward(block),
|
| 909 |
+
hidden_states,
|
| 910 |
+
rotary_pos_emb_list,
|
| 911 |
+
None,
|
| 912 |
+
attention_mask,
|
| 913 |
+
head_mask[i],
|
| 914 |
+
encoder_hidden_states,
|
| 915 |
+
encoder_attention_mask,
|
| 916 |
+
)
|
| 917 |
+
else:
|
| 918 |
+
|
| 919 |
+
outputs = block(
|
| 920 |
+
hidden_states,
|
| 921 |
+
layer_past=layer_past,
|
| 922 |
+
rotary_pos_emb_list=rotary_pos_emb_list,
|
| 923 |
+
attention_mask=attention_mask,
|
| 924 |
+
head_mask=head_mask[i],
|
| 925 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 926 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 927 |
+
use_cache=use_cache,
|
| 928 |
+
output_attentions=output_attentions,
|
| 929 |
+
)
|
| 930 |
+
|
| 931 |
+
hidden_states = outputs[0]
|
| 932 |
+
if use_cache is True:
|
| 933 |
+
presents = presents + (outputs[1],)
|
| 934 |
+
|
| 935 |
+
if output_attentions:
|
| 936 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
| 937 |
+
|
| 938 |
+
hidden_states = self.ln_f(hidden_states)
|
| 939 |
+
hidden_states = hidden_states.view(output_shape)
|
| 940 |
+
# Add last hidden state
|
| 941 |
+
if output_hidden_states:
|
| 942 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 943 |
+
|
| 944 |
+
if not return_dict:
|
| 945 |
+
return tuple(
|
| 946 |
+
v for v in [hidden_states, presents, all_hidden_states] if v is not None
|
| 947 |
+
)
|
| 948 |
+
|
| 949 |
+
return BaseModelOutputWithPast(
|
| 950 |
+
last_hidden_state=hidden_states,
|
| 951 |
+
past_key_values=presents,
|
| 952 |
+
hidden_states=all_hidden_states,
|
| 953 |
+
attentions=all_self_attentions,
|
| 954 |
+
)
|
| 955 |
+
|
| 956 |
+
|
| 957 |
+
class QWenLMHeadModel(QWenPreTrainedModel):
|
| 958 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
|
| 959 |
+
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
|
| 960 |
+
|
| 961 |
+
def __init__(self, config):
|
| 962 |
+
super().__init__(config)
|
| 963 |
+
assert (
|
| 964 |
+
config.bf16 + config.fp16 + config.fp32 <= 1
|
| 965 |
+
), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
|
| 966 |
+
|
| 967 |
+
autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
|
| 968 |
+
|
| 969 |
+
if autoset_precision:
|
| 970 |
+
if SUPPORT_BF16:
|
| 971 |
+
logger.warn(
|
| 972 |
+
"The model is automatically converting to bf16 for faster inference. "
|
| 973 |
+
"If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
|
| 974 |
+
)
|
| 975 |
+
config.bf16 = True
|
| 976 |
+
elif SUPPORT_FP16:
|
| 977 |
+
logger.warn(
|
| 978 |
+
"The model is automatically converting to fp16 for faster inference. "
|
| 979 |
+
"If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
|
| 980 |
+
)
|
| 981 |
+
config.fp16 = True
|
| 982 |
+
else:
|
| 983 |
+
config.fp32 = True
|
| 984 |
+
|
| 985 |
+
if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
|
| 986 |
+
logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".")
|
| 987 |
+
if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
|
| 988 |
+
logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster")
|
| 989 |
+
if config.fp32:
|
| 990 |
+
if SUPPORT_BF16:
|
| 991 |
+
logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
|
| 992 |
+
elif SUPPORT_FP16:
|
| 993 |
+
logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
|
| 994 |
+
|
| 995 |
+
if config.use_flash_attn == "auto":
|
| 996 |
+
if config.bf16 or config.fp16:
|
| 997 |
+
logger.warn("Try importing flash-attention for faster inference...")
|
| 998 |
+
config.use_flash_attn = True
|
| 999 |
+
else:
|
| 1000 |
+
config.use_flash_attn = False
|
| 1001 |
+
if config.use_flash_attn and config.fp32:
|
| 1002 |
+
logger.warn("Flash attention will be disabled because it does NOT support fp32.")
|
| 1003 |
+
|
| 1004 |
+
if config.use_flash_attn:
|
| 1005 |
+
_import_flash_attn()
|
| 1006 |
+
|
| 1007 |
+
self.transformer = QWenModel(config)
|
| 1008 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1009 |
+
|
| 1010 |
+
if config.bf16:
|
| 1011 |
+
self.transformer.bfloat16()
|
| 1012 |
+
self.lm_head.bfloat16()
|
| 1013 |
+
if config.fp16:
|
| 1014 |
+
self.transformer.half()
|
| 1015 |
+
self.lm_head.half()
|
| 1016 |
+
self.post_init()
|
| 1017 |
+
|
| 1018 |
+
|
| 1019 |
+
@classmethod
|
| 1020 |
+
def from_pretrained(
|
| 1021 |
+
cls,
|
| 1022 |
+
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
| 1023 |
+
*model_args,
|
| 1024 |
+
config = None,
|
| 1025 |
+
cache_dir = None,
|
| 1026 |
+
**kwargs,
|
| 1027 |
+
):
|
| 1028 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
| 1029 |
+
# Local Directory of Models
|
| 1030 |
+
mel_filters_path = os.path.join(pretrained_model_name_or_path, 'mel_filters.npz')
|
| 1031 |
+
print(mel_filters_path)
|
| 1032 |
+
tgt_cache_path = os.path.join(os.path.dirname(__file__), 'mel_filters.npz')
|
| 1033 |
+
shutil.copy(mel_filters_path, tgt_cache_path)
|
| 1034 |
+
else:
|
| 1035 |
+
# Loading from huggingface repo
|
| 1036 |
+
from huggingface_hub import hf_hub_download
|
| 1037 |
+
hf_hub_download(repo_id=pretrained_model_name_or_path, filename="mel_filters.npz",
|
| 1038 |
+
token=kwargs.get('token', None), local_dir=os.path.dirname(__file__))
|
| 1039 |
+
return super().from_pretrained(pretrained_model_name_or_path, *model_args, config=config, cache_dir=cache_dir, **kwargs)
|
| 1040 |
+
|
| 1041 |
+
def get_output_embeddings(self):
|
| 1042 |
+
return self.lm_head
|
| 1043 |
+
|
| 1044 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1045 |
+
self.lm_head = new_embeddings
|
| 1046 |
+
|
| 1047 |
+
def prepare_inputs_for_generation(
|
| 1048 |
+
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
|
| 1049 |
+
):
|
| 1050 |
+
audio_info = kwargs.pop("audio_info", None)
|
| 1051 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
| 1052 |
+
if past_key_values:
|
| 1053 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
| 1054 |
+
if token_type_ids is not None:
|
| 1055 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
| 1056 |
+
|
| 1057 |
+
attention_mask = kwargs.get("attention_mask", None)
|
| 1058 |
+
position_ids = kwargs.get("position_ids", None)
|
| 1059 |
+
|
| 1060 |
+
if attention_mask is not None and position_ids is None:
|
| 1061 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1062 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1063 |
+
if past_key_values:
|
| 1064 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
| 1065 |
+
else:
|
| 1066 |
+
position_ids = None
|
| 1067 |
+
|
| 1068 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 1069 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1070 |
+
else:
|
| 1071 |
+
model_inputs = {"input_ids": input_ids}
|
| 1072 |
+
|
| 1073 |
+
model_inputs.update(
|
| 1074 |
+
{
|
| 1075 |
+
"past_key_values": past_key_values,
|
| 1076 |
+
"use_cache": kwargs.get("use_cache"),
|
| 1077 |
+
"position_ids": position_ids,
|
| 1078 |
+
"attention_mask": attention_mask,
|
| 1079 |
+
"token_type_ids": token_type_ids,
|
| 1080 |
+
"audio_info": audio_info
|
| 1081 |
+
}
|
| 1082 |
+
)
|
| 1083 |
+
return model_inputs
|
| 1084 |
+
|
| 1085 |
+
def forward(
|
| 1086 |
+
self,
|
| 1087 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1088 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 1089 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1090 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1091 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1092 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1093 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1094 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 1095 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 1096 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1097 |
+
use_cache: Optional[bool] = None,
|
| 1098 |
+
output_attentions: Optional[bool] = None,
|
| 1099 |
+
output_hidden_states: Optional[bool] = None,
|
| 1100 |
+
return_dict: Optional[bool] = None,
|
| 1101 |
+
audio_info: Dict = None
|
| 1102 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1103 |
+
|
| 1104 |
+
return_dict = (
|
| 1105 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1106 |
+
)
|
| 1107 |
+
|
| 1108 |
+
transformer_outputs = self.transformer(
|
| 1109 |
+
input_ids,
|
| 1110 |
+
past_key_values=past_key_values,
|
| 1111 |
+
attention_mask=attention_mask,
|
| 1112 |
+
token_type_ids=token_type_ids,
|
| 1113 |
+
position_ids=position_ids,
|
| 1114 |
+
head_mask=head_mask,
|
| 1115 |
+
inputs_embeds=inputs_embeds,
|
| 1116 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1117 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1118 |
+
use_cache=use_cache,
|
| 1119 |
+
output_attentions=output_attentions,
|
| 1120 |
+
output_hidden_states=output_hidden_states,
|
| 1121 |
+
return_dict=return_dict,
|
| 1122 |
+
audio_info=audio_info
|
| 1123 |
+
)
|
| 1124 |
+
hidden_states = transformer_outputs[0]
|
| 1125 |
+
|
| 1126 |
+
lm_logits = self.lm_head(hidden_states)
|
| 1127 |
+
|
| 1128 |
+
loss = None
|
| 1129 |
+
if labels is not None:
|
| 1130 |
+
labels = labels.to(lm_logits.device)
|
| 1131 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 1132 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1133 |
+
loss_fct = CrossEntropyLoss()
|
| 1134 |
+
loss = loss_fct(
|
| 1135 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
| 1136 |
+
)
|
| 1137 |
+
|
| 1138 |
+
if not return_dict:
|
| 1139 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
| 1140 |
+
return ((loss,) + output) if loss is not None else output
|
| 1141 |
+
|
| 1142 |
+
return CausalLMOutputWithPast(
|
| 1143 |
+
loss=loss,
|
| 1144 |
+
logits=lm_logits,
|
| 1145 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1146 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1147 |
+
attentions=transformer_outputs.attentions,
|
| 1148 |
+
)
|
| 1149 |
+
|
| 1150 |
+
@staticmethod
|
| 1151 |
+
def _reorder_cache(
|
| 1152 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
| 1153 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
| 1154 |
+
|
| 1155 |
+
return tuple(
|
| 1156 |
+
tuple(
|
| 1157 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
| 1158 |
+
for past_state in layer_past
|
| 1159 |
+
)
|
| 1160 |
+
for layer_past in past_key_values
|
| 1161 |
+
)
|
| 1162 |
+
|
| 1163 |
+
def chat(
|
| 1164 |
+
self,
|
| 1165 |
+
tokenizer: PreTrainedTokenizer,
|
| 1166 |
+
query: str,
|
| 1167 |
+
history: Optional[HistoryType],
|
| 1168 |
+
system: str = "You are a helpful assistant.",
|
| 1169 |
+
append_history: bool = True,
|
| 1170 |
+
stream: Optional[bool] = _SENTINEL,
|
| 1171 |
+
stop_words_ids: Optional[List[List[int]]] = None,
|
| 1172 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 1173 |
+
**kwargs,
|
| 1174 |
+
) -> Tuple[str, HistoryType]:
|
| 1175 |
+
generation_config = generation_config if generation_config is not None else self.generation_config
|
| 1176 |
+
|
| 1177 |
+
assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
|
| 1178 |
+
assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
|
| 1179 |
+
if history is None:
|
| 1180 |
+
history = []
|
| 1181 |
+
else:
|
| 1182 |
+
# make a copy of the user's input such that is is left untouched
|
| 1183 |
+
history = copy.deepcopy(history)
|
| 1184 |
+
|
| 1185 |
+
if stop_words_ids is None:
|
| 1186 |
+
stop_words_ids = []
|
| 1187 |
+
|
| 1188 |
+
max_window_size = kwargs.get('max_window_size', None)
|
| 1189 |
+
if max_window_size is None:
|
| 1190 |
+
max_window_size = generation_config.max_window_size
|
| 1191 |
+
raw_text, context_tokens, audio_info = make_context(
|
| 1192 |
+
tokenizer,
|
| 1193 |
+
query,
|
| 1194 |
+
history=history,
|
| 1195 |
+
system=system,
|
| 1196 |
+
max_window_size=max_window_size,
|
| 1197 |
+
chat_format=generation_config.chat_format,
|
| 1198 |
+
)
|
| 1199 |
+
|
| 1200 |
+
stop_words_ids.extend(get_stop_words_ids(
|
| 1201 |
+
generation_config.chat_format, tokenizer
|
| 1202 |
+
))
|
| 1203 |
+
input_ids = torch.tensor([context_tokens]).to(self.device)
|
| 1204 |
+
kwargs['audio_info'] = audio_info
|
| 1205 |
+
outputs = self.generate(
|
| 1206 |
+
input_ids,
|
| 1207 |
+
stop_words_ids=stop_words_ids,
|
| 1208 |
+
return_dict_in_generate=False,
|
| 1209 |
+
generation_config=generation_config,
|
| 1210 |
+
**kwargs,
|
| 1211 |
+
)
|
| 1212 |
+
|
| 1213 |
+
response = decode_tokens(
|
| 1214 |
+
outputs[0],
|
| 1215 |
+
tokenizer,
|
| 1216 |
+
raw_text_len=len(raw_text),
|
| 1217 |
+
context_length=len(context_tokens),
|
| 1218 |
+
chat_format=generation_config.chat_format,
|
| 1219 |
+
verbose=False,
|
| 1220 |
+
errors='replace',
|
| 1221 |
+
audio_info=audio_info
|
| 1222 |
+
)
|
| 1223 |
+
|
| 1224 |
+
# as history is a copy of the user inputs,
|
| 1225 |
+
# we can always return the new turn to the user.
|
| 1226 |
+
# separating input history and output history also enables the user
|
| 1227 |
+
# to implement more complex history management
|
| 1228 |
+
history.append((query, response))
|
| 1229 |
+
|
| 1230 |
+
return response, history
|
| 1231 |
+
|
| 1232 |
+
def chat_stream(
|
| 1233 |
+
self,
|
| 1234 |
+
tokenizer: PreTrainedTokenizer,
|
| 1235 |
+
query: str,
|
| 1236 |
+
history: Optional[HistoryType],
|
| 1237 |
+
system: str = "You are a helpful assistant.",
|
| 1238 |
+
stop_words_ids: Optional[List[List[int]]] = None,
|
| 1239 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
| 1240 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 1241 |
+
**kwargs,
|
| 1242 |
+
) -> Generator[str, Any, None]:
|
| 1243 |
+
generation_config = generation_config if generation_config is not None else self.generation_config
|
| 1244 |
+
assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
|
| 1245 |
+
if history is None:
|
| 1246 |
+
history = []
|
| 1247 |
+
if stop_words_ids is None:
|
| 1248 |
+
stop_words_ids = []
|
| 1249 |
+
|
| 1250 |
+
max_window_size = kwargs.get('max_window_size', None)
|
| 1251 |
+
if max_window_size is None:
|
| 1252 |
+
max_window_size = generation_config.max_window_size
|
| 1253 |
+
raw_text, context_tokens = make_context(
|
| 1254 |
+
tokenizer,
|
| 1255 |
+
query,
|
| 1256 |
+
history=history,
|
| 1257 |
+
system=system,
|
| 1258 |
+
max_window_size=max_window_size,
|
| 1259 |
+
chat_format=generation_config.chat_format,
|
| 1260 |
+
)
|
| 1261 |
+
|
| 1262 |
+
stop_words_ids.extend(get_stop_words_ids(
|
| 1263 |
+
generation_config.chat_format, tokenizer
|
| 1264 |
+
))
|
| 1265 |
+
if stop_words_ids is not None:
|
| 1266 |
+
stop_words_logits_processor = StopWordsLogitsProcessor(
|
| 1267 |
+
stop_words_ids=stop_words_ids,
|
| 1268 |
+
eos_token_id=generation_config.eos_token_id,
|
| 1269 |
+
)
|
| 1270 |
+
if logits_processor is None:
|
| 1271 |
+
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
| 1272 |
+
else:
|
| 1273 |
+
logits_processor.append(stop_words_logits_processor)
|
| 1274 |
+
input_ids = torch.tensor([context_tokens]).to(self.device)
|
| 1275 |
+
|
| 1276 |
+
from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
|
| 1277 |
+
self.__class__.generate_stream = NewGenerationMixin.generate
|
| 1278 |
+
self.__class__.sample_stream = NewGenerationMixin.sample_stream
|
| 1279 |
+
stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
|
| 1280 |
+
|
| 1281 |
+
def stream_generator():
|
| 1282 |
+
outputs = []
|
| 1283 |
+
for token in self.generate_stream(
|
| 1284 |
+
input_ids,
|
| 1285 |
+
return_dict_in_generate=False,
|
| 1286 |
+
generation_config=stream_config,
|
| 1287 |
+
logits_processor=logits_processor,
|
| 1288 |
+
seed=-1,
|
| 1289 |
+
**kwargs):
|
| 1290 |
+
outputs.append(token.item())
|
| 1291 |
+
yield tokenizer.decode(outputs, skip_special_tokens=True, errors='ignore')
|
| 1292 |
+
|
| 1293 |
+
return stream_generator()
|
| 1294 |
+
|
| 1295 |
+
def generate(
|
| 1296 |
+
self,
|
| 1297 |
+
inputs: Optional[torch.Tensor] = None,
|
| 1298 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 1299 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
| 1300 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
| 1301 |
+
prefix_allowed_tokens_fn: Optional[
|
| 1302 |
+
Callable[[int, torch.Tensor], List[int]]
|
| 1303 |
+
] = None,
|
| 1304 |
+
synced_gpus: Optional[bool] = None,
|
| 1305 |
+
assistant_model: Optional["PreTrainedModel"] = None,
|
| 1306 |
+
streamer: Optional["BaseStreamer"] = None,
|
| 1307 |
+
**kwargs,
|
| 1308 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
| 1309 |
+
generation_config = generation_config if generation_config is not None else self.generation_config
|
| 1310 |
+
|
| 1311 |
+
# Process stop_words_ids.
|
| 1312 |
+
stop_words_ids = kwargs.pop("stop_words_ids", None)
|
| 1313 |
+
if stop_words_ids is None and generation_config is not None:
|
| 1314 |
+
stop_words_ids = getattr(generation_config, "stop_words_ids", None)
|
| 1315 |
+
if stop_words_ids is None:
|
| 1316 |
+
stop_words_ids = getattr(generation_config, "stop_words_ids", None)
|
| 1317 |
+
|
| 1318 |
+
if stop_words_ids is not None:
|
| 1319 |
+
stop_words_logits_processor = StopWordsLogitsProcessor(
|
| 1320 |
+
stop_words_ids=stop_words_ids,
|
| 1321 |
+
eos_token_id=generation_config.eos_token_id,
|
| 1322 |
+
)
|
| 1323 |
+
if logits_processor is None:
|
| 1324 |
+
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
| 1325 |
+
else:
|
| 1326 |
+
logits_processor.append(stop_words_logits_processor)
|
| 1327 |
+
|
| 1328 |
+
return super().generate(
|
| 1329 |
+
inputs,
|
| 1330 |
+
generation_config=generation_config,
|
| 1331 |
+
logits_processor=logits_processor,
|
| 1332 |
+
stopping_criteria=stopping_criteria,
|
| 1333 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
| 1334 |
+
synced_gpus=synced_gpus,
|
| 1335 |
+
assistant_model=assistant_model,
|
| 1336 |
+
streamer=streamer,
|
| 1337 |
+
**kwargs,
|
| 1338 |
+
)
|
| 1339 |
+
|
| 1340 |
+
|
| 1341 |
+
class RotaryEmbedding(torch.nn.Module):
|
| 1342 |
+
def __init__(self, dim, base=10000):
|
| 1343 |
+
super().__init__()
|
| 1344 |
+
self.dim = dim
|
| 1345 |
+
self.base = base
|
| 1346 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
| 1347 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 1348 |
+
if importlib.util.find_spec("einops") is None:
|
| 1349 |
+
raise RuntimeError("einops is required for Rotary Embedding")
|
| 1350 |
+
|
| 1351 |
+
self._rotary_pos_emb_cache = None
|
| 1352 |
+
self._seq_len_cached = 0
|
| 1353 |
+
self._ntk_alpha_cached = 1.0
|
| 1354 |
+
self._ntk_alpha_cached_list = [1.0]
|
| 1355 |
+
|
| 1356 |
+
def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0):
|
| 1357 |
+
seqlen = max_seq_len + offset
|
| 1358 |
+
if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
|
| 1359 |
+
base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
|
| 1360 |
+
self.inv_freq = 1.0 / (
|
| 1361 |
+
base
|
| 1362 |
+
** (
|
| 1363 |
+
torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
|
| 1364 |
+
/ self.dim
|
| 1365 |
+
)
|
| 1366 |
+
)
|
| 1367 |
+
self._seq_len_cached = max(2 * seqlen, 16)
|
| 1368 |
+
self._ntk_alpha_cached = ntk_alpha
|
| 1369 |
+
seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
|
| 1370 |
+
freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
|
| 1371 |
+
|
| 1372 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 1373 |
+
from einops import rearrange
|
| 1374 |
+
|
| 1375 |
+
emb = rearrange(emb, "n d -> 1 n 1 d")
|
| 1376 |
+
|
| 1377 |
+
cos, sin = emb.cos(), emb.sin()
|
| 1378 |
+
self._rotary_pos_emb_cache = [cos, sin]
|
| 1379 |
+
|
| 1380 |
+
def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
|
| 1381 |
+
self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
|
| 1382 |
+
cos, sin = self._rotary_pos_emb_cache
|
| 1383 |
+
return [cos[:, offset : offset + max_seq_len], sin[:, offset : offset + max_seq_len]]
|
| 1384 |
+
|
| 1385 |
+
|
| 1386 |
+
def _rotate_half(x):
|
| 1387 |
+
from einops import rearrange
|
| 1388 |
+
|
| 1389 |
+
x = rearrange(x, "... (j d) -> ... j d", j=2)
|
| 1390 |
+
x1, x2 = x.unbind(dim=-2)
|
| 1391 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 1392 |
+
|
| 1393 |
+
|
| 1394 |
+
def apply_rotary_pos_emb(t, freqs):
|
| 1395 |
+
cos, sin = freqs
|
| 1396 |
+
if apply_rotary_emb_func is not None and t.is_cuda:
|
| 1397 |
+
t_ = t.float()
|
| 1398 |
+
cos = cos.squeeze(0).squeeze(1)[:, : cos.shape[-1] // 2]
|
| 1399 |
+
sin = sin.squeeze(0).squeeze(1)[:, : sin.shape[-1] // 2]
|
| 1400 |
+
output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
|
| 1401 |
+
return output
|
| 1402 |
+
else:
|
| 1403 |
+
rot_dim = freqs[0].shape[-1]
|
| 1404 |
+
cos, sin = freqs
|
| 1405 |
+
t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
|
| 1406 |
+
t_ = t_.float()
|
| 1407 |
+
t_pass_ = t_pass_.float()
|
| 1408 |
+
t_ = (t_ * cos) + (_rotate_half(t_) * sin)
|
| 1409 |
+
return torch.cat((t_, t_pass_), dim=-1).type_as(t)
|
| 1410 |
+
|
| 1411 |
+
|
| 1412 |
+
class RMSNorm(torch.nn.Module):
|
| 1413 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 1414 |
+
super().__init__()
|
| 1415 |
+
self.eps = eps
|
| 1416 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 1417 |
+
|
| 1418 |
+
def _norm(self, x):
|
| 1419 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 1420 |
+
|
| 1421 |
+
def forward(self, x):
|
| 1422 |
+
if rms_norm is not None and x.is_cuda:
|
| 1423 |
+
return rms_norm(x, self.weight, self.eps)
|
| 1424 |
+
else:
|
| 1425 |
+
output = self._norm(x.float()).type_as(x)
|
| 1426 |
+
return output * self.weight
|
pytorch_model.bin.index.json
ADDED
|
@@ -0,0 +1,860 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 19313870336
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "pytorch_model-00010-of-00010.bin",
|
| 7 |
+
"transformer.h.0.attn.c_attn.bias": "pytorch_model-00001-of-00010.bin",
|
| 8 |
+
"transformer.h.0.attn.c_attn.weight": "pytorch_model-00001-of-00010.bin",
|
| 9 |
+
"transformer.h.0.attn.c_proj.weight": "pytorch_model-00001-of-00010.bin",
|
| 10 |
+
"transformer.h.0.ln_1.weight": "pytorch_model-00001-of-00010.bin",
|
| 11 |
+
"transformer.h.0.ln_2.weight": "pytorch_model-00001-of-00010.bin",
|
| 12 |
+
"transformer.h.0.mlp.c_proj.weight": "pytorch_model-00001-of-00010.bin",
|
| 13 |
+
"transformer.h.0.mlp.w1.weight": "pytorch_model-00001-of-00010.bin",
|
| 14 |
+
"transformer.h.0.mlp.w2.weight": "pytorch_model-00001-of-00010.bin",
|
| 15 |
+
"transformer.h.1.attn.c_attn.bias": "pytorch_model-00001-of-00010.bin",
|
| 16 |
+
"transformer.h.1.attn.c_attn.weight": "pytorch_model-00001-of-00010.bin",
|
| 17 |
+
"transformer.h.1.attn.c_proj.weight": "pytorch_model-00001-of-00010.bin",
|
| 18 |
+
"transformer.h.1.ln_1.weight": "pytorch_model-00001-of-00010.bin",
|
| 19 |
+
"transformer.h.1.ln_2.weight": "pytorch_model-00001-of-00010.bin",
|
| 20 |
+
"transformer.h.1.mlp.c_proj.weight": "pytorch_model-00002-of-00010.bin",
|
| 21 |
+
"transformer.h.1.mlp.w1.weight": "pytorch_model-00001-of-00010.bin",
|
| 22 |
+
"transformer.h.1.mlp.w2.weight": "pytorch_model-00001-of-00010.bin",
|
| 23 |
+
"transformer.h.10.attn.c_attn.bias": "pytorch_model-00003-of-00010.bin",
|
| 24 |
+
"transformer.h.10.attn.c_attn.weight": "pytorch_model-00003-of-00010.bin",
|
| 25 |
+
"transformer.h.10.attn.c_proj.weight": "pytorch_model-00003-of-00010.bin",
|
| 26 |
+
"transformer.h.10.ln_1.weight": "pytorch_model-00003-of-00010.bin",
|
| 27 |
+
"transformer.h.10.ln_2.weight": "pytorch_model-00003-of-00010.bin",
|
| 28 |
+
"transformer.h.10.mlp.c_proj.weight": "pytorch_model-00003-of-00010.bin",
|
| 29 |
+
"transformer.h.10.mlp.w1.weight": "pytorch_model-00003-of-00010.bin",
|
| 30 |
+
"transformer.h.10.mlp.w2.weight": "pytorch_model-00003-of-00010.bin",
|
| 31 |
+
"transformer.h.11.attn.c_attn.bias": "pytorch_model-00003-of-00010.bin",
|
| 32 |
+
"transformer.h.11.attn.c_attn.weight": "pytorch_model-00003-of-00010.bin",
|
| 33 |
+
"transformer.h.11.attn.c_proj.weight": "pytorch_model-00003-of-00010.bin",
|
| 34 |
+
"transformer.h.11.ln_1.weight": "pytorch_model-00003-of-00010.bin",
|
| 35 |
+
"transformer.h.11.ln_2.weight": "pytorch_model-00003-of-00010.bin",
|
| 36 |
+
"transformer.h.11.mlp.c_proj.weight": "pytorch_model-00004-of-00010.bin",
|
| 37 |
+
"transformer.h.11.mlp.w1.weight": "pytorch_model-00004-of-00010.bin",
|
| 38 |
+
"transformer.h.11.mlp.w2.weight": "pytorch_model-00004-of-00010.bin",
|
| 39 |
+
"transformer.h.12.attn.c_attn.bias": "pytorch_model-00004-of-00010.bin",
|
| 40 |
+
"transformer.h.12.attn.c_attn.weight": "pytorch_model-00004-of-00010.bin",
|
| 41 |
+
"transformer.h.12.attn.c_proj.weight": "pytorch_model-00004-of-00010.bin",
|
| 42 |
+
"transformer.h.12.ln_1.weight": "pytorch_model-00004-of-00010.bin",
|
| 43 |
+
"transformer.h.12.ln_2.weight": "pytorch_model-00004-of-00010.bin",
|
| 44 |
+
"transformer.h.12.mlp.c_proj.weight": "pytorch_model-00004-of-00010.bin",
|
| 45 |
+
"transformer.h.12.mlp.w1.weight": "pytorch_model-00004-of-00010.bin",
|
| 46 |
+
"transformer.h.12.mlp.w2.weight": "pytorch_model-00004-of-00010.bin",
|
| 47 |
+
"transformer.h.13.attn.c_attn.bias": "pytorch_model-00004-of-00010.bin",
|
| 48 |
+
"transformer.h.13.attn.c_attn.weight": "pytorch_model-00004-of-00010.bin",
|
| 49 |
+
"transformer.h.13.attn.c_proj.weight": "pytorch_model-00004-of-00010.bin",
|
| 50 |
+
"transformer.h.13.ln_1.weight": "pytorch_model-00004-of-00010.bin",
|
| 51 |
+
"transformer.h.13.ln_2.weight": "pytorch_model-00004-of-00010.bin",
|
| 52 |
+
"transformer.h.13.mlp.c_proj.weight": "pytorch_model-00004-of-00010.bin",
|
| 53 |
+
"transformer.h.13.mlp.w1.weight": "pytorch_model-00004-of-00010.bin",
|
| 54 |
+
"transformer.h.13.mlp.w2.weight": "pytorch_model-00004-of-00010.bin",
|
| 55 |
+
"transformer.h.14.attn.c_attn.bias": "pytorch_model-00004-of-00010.bin",
|
| 56 |
+
"transformer.h.14.attn.c_attn.weight": "pytorch_model-00004-of-00010.bin",
|
| 57 |
+
"transformer.h.14.attn.c_proj.weight": "pytorch_model-00004-of-00010.bin",
|
| 58 |
+
"transformer.h.14.ln_1.weight": "pytorch_model-00004-of-00010.bin",
|
| 59 |
+
"transformer.h.14.ln_2.weight": "pytorch_model-00004-of-00010.bin",
|
| 60 |
+
"transformer.h.14.mlp.c_proj.weight": "pytorch_model-00004-of-00010.bin",
|
| 61 |
+
"transformer.h.14.mlp.w1.weight": "pytorch_model-00004-of-00010.bin",
|
| 62 |
+
"transformer.h.14.mlp.w2.weight": "pytorch_model-00004-of-00010.bin",
|
| 63 |
+
"transformer.h.15.attn.c_attn.bias": "pytorch_model-00004-of-00010.bin",
|
| 64 |
+
"transformer.h.15.attn.c_attn.weight": "pytorch_model-00004-of-00010.bin",
|
| 65 |
+
"transformer.h.15.attn.c_proj.weight": "pytorch_model-00004-of-00010.bin",
|
| 66 |
+
"transformer.h.15.ln_1.weight": "pytorch_model-00004-of-00010.bin",
|
| 67 |
+
"transformer.h.15.ln_2.weight": "pytorch_model-00004-of-00010.bin",
|
| 68 |
+
"transformer.h.15.mlp.c_proj.weight": "pytorch_model-00004-of-00010.bin",
|
| 69 |
+
"transformer.h.15.mlp.w1.weight": "pytorch_model-00004-of-00010.bin",
|
| 70 |
+
"transformer.h.15.mlp.w2.weight": "pytorch_model-00004-of-00010.bin",
|
| 71 |
+
"transformer.h.16.attn.c_attn.bias": "pytorch_model-00004-of-00010.bin",
|
| 72 |
+
"transformer.h.16.attn.c_attn.weight": "pytorch_model-00004-of-00010.bin",
|
| 73 |
+
"transformer.h.16.attn.c_proj.weight": "pytorch_model-00005-of-00010.bin",
|
| 74 |
+
"transformer.h.16.ln_1.weight": "pytorch_model-00004-of-00010.bin",
|
| 75 |
+
"transformer.h.16.ln_2.weight": "pytorch_model-00005-of-00010.bin",
|
| 76 |
+
"transformer.h.16.mlp.c_proj.weight": "pytorch_model-00005-of-00010.bin",
|
| 77 |
+
"transformer.h.16.mlp.w1.weight": "pytorch_model-00005-of-00010.bin",
|
| 78 |
+
"transformer.h.16.mlp.w2.weight": "pytorch_model-00005-of-00010.bin",
|
| 79 |
+
"transformer.h.17.attn.c_attn.bias": "pytorch_model-00005-of-00010.bin",
|
| 80 |
+
"transformer.h.17.attn.c_attn.weight": "pytorch_model-00005-of-00010.bin",
|
| 81 |
+
"transformer.h.17.attn.c_proj.weight": "pytorch_model-00005-of-00010.bin",
|
| 82 |
+
"transformer.h.17.ln_1.weight": "pytorch_model-00005-of-00010.bin",
|
| 83 |
+
"transformer.h.17.ln_2.weight": "pytorch_model-00005-of-00010.bin",
|
| 84 |
+
"transformer.h.17.mlp.c_proj.weight": "pytorch_model-00005-of-00010.bin",
|
| 85 |
+
"transformer.h.17.mlp.w1.weight": "pytorch_model-00005-of-00010.bin",
|
| 86 |
+
"transformer.h.17.mlp.w2.weight": "pytorch_model-00005-of-00010.bin",
|
| 87 |
+
"transformer.h.18.attn.c_attn.bias": "pytorch_model-00005-of-00010.bin",
|
| 88 |
+
"transformer.h.18.attn.c_attn.weight": "pytorch_model-00005-of-00010.bin",
|
| 89 |
+
"transformer.h.18.attn.c_proj.weight": "pytorch_model-00005-of-00010.bin",
|
| 90 |
+
"transformer.h.18.ln_1.weight": "pytorch_model-00005-of-00010.bin",
|
| 91 |
+
"transformer.h.18.ln_2.weight": "pytorch_model-00005-of-00010.bin",
|
| 92 |
+
"transformer.h.18.mlp.c_proj.weight": "pytorch_model-00005-of-00010.bin",
|
| 93 |
+
"transformer.h.18.mlp.w1.weight": "pytorch_model-00005-of-00010.bin",
|
| 94 |
+
"transformer.h.18.mlp.w2.weight": "pytorch_model-00005-of-00010.bin",
|
| 95 |
+
"transformer.h.19.attn.c_attn.bias": "pytorch_model-00005-of-00010.bin",
|
| 96 |
+
"transformer.h.19.attn.c_attn.weight": "pytorch_model-00005-of-00010.bin",
|
| 97 |
+
"transformer.h.19.attn.c_proj.weight": "pytorch_model-00005-of-00010.bin",
|
| 98 |
+
"transformer.h.19.ln_1.weight": "pytorch_model-00005-of-00010.bin",
|
| 99 |
+
"transformer.h.19.ln_2.weight": "pytorch_model-00005-of-00010.bin",
|
| 100 |
+
"transformer.h.19.mlp.c_proj.weight": "pytorch_model-00005-of-00010.bin",
|
| 101 |
+
"transformer.h.19.mlp.w1.weight": "pytorch_model-00005-of-00010.bin",
|
| 102 |
+
"transformer.h.19.mlp.w2.weight": "pytorch_model-00005-of-00010.bin",
|
| 103 |
+
"transformer.h.2.attn.c_attn.bias": "pytorch_model-00002-of-00010.bin",
|
| 104 |
+
"transformer.h.2.attn.c_attn.weight": "pytorch_model-00002-of-00010.bin",
|
| 105 |
+
"transformer.h.2.attn.c_proj.weight": "pytorch_model-00002-of-00010.bin",
|
| 106 |
+
"transformer.h.2.ln_1.weight": "pytorch_model-00002-of-00010.bin",
|
| 107 |
+
"transformer.h.2.ln_2.weight": "pytorch_model-00002-of-00010.bin",
|
| 108 |
+
"transformer.h.2.mlp.c_proj.weight": "pytorch_model-00002-of-00010.bin",
|
| 109 |
+
"transformer.h.2.mlp.w1.weight": "pytorch_model-00002-of-00010.bin",
|
| 110 |
+
"transformer.h.2.mlp.w2.weight": "pytorch_model-00002-of-00010.bin",
|
| 111 |
+
"transformer.h.20.attn.c_attn.bias": "pytorch_model-00005-of-00010.bin",
|
| 112 |
+
"transformer.h.20.attn.c_attn.weight": "pytorch_model-00005-of-00010.bin",
|
| 113 |
+
"transformer.h.20.attn.c_proj.weight": "pytorch_model-00005-of-00010.bin",
|
| 114 |
+
"transformer.h.20.ln_1.weight": "pytorch_model-00005-of-00010.bin",
|
| 115 |
+
"transformer.h.20.ln_2.weight": "pytorch_model-00005-of-00010.bin",
|
| 116 |
+
"transformer.h.20.mlp.c_proj.weight": "pytorch_model-00005-of-00010.bin",
|
| 117 |
+
"transformer.h.20.mlp.w1.weight": "pytorch_model-00005-of-00010.bin",
|
| 118 |
+
"transformer.h.20.mlp.w2.weight": "pytorch_model-00005-of-00010.bin",
|
| 119 |
+
"transformer.h.21.attn.c_attn.bias": "pytorch_model-00006-of-00010.bin",
|
| 120 |
+
"transformer.h.21.attn.c_attn.weight": "pytorch_model-00006-of-00010.bin",
|
| 121 |
+
"transformer.h.21.attn.c_proj.weight": "pytorch_model-00006-of-00010.bin",
|
| 122 |
+
"transformer.h.21.ln_1.weight": "pytorch_model-00005-of-00010.bin",
|
| 123 |
+
"transformer.h.21.ln_2.weight": "pytorch_model-00006-of-00010.bin",
|
| 124 |
+
"transformer.h.21.mlp.c_proj.weight": "pytorch_model-00006-of-00010.bin",
|
| 125 |
+
"transformer.h.21.mlp.w1.weight": "pytorch_model-00006-of-00010.bin",
|
| 126 |
+
"transformer.h.21.mlp.w2.weight": "pytorch_model-00006-of-00010.bin",
|
| 127 |
+
"transformer.h.22.attn.c_attn.bias": "pytorch_model-00006-of-00010.bin",
|
| 128 |
+
"transformer.h.22.attn.c_attn.weight": "pytorch_model-00006-of-00010.bin",
|
| 129 |
+
"transformer.h.22.attn.c_proj.weight": "pytorch_model-00006-of-00010.bin",
|
| 130 |
+
"transformer.h.22.ln_1.weight": "pytorch_model-00006-of-00010.bin",
|
| 131 |
+
"transformer.h.22.ln_2.weight": "pytorch_model-00006-of-00010.bin",
|
| 132 |
+
"transformer.h.22.mlp.c_proj.weight": "pytorch_model-00006-of-00010.bin",
|
| 133 |
+
"transformer.h.22.mlp.w1.weight": "pytorch_model-00006-of-00010.bin",
|
| 134 |
+
"transformer.h.22.mlp.w2.weight": "pytorch_model-00006-of-00010.bin",
|
| 135 |
+
"transformer.h.23.attn.c_attn.bias": "pytorch_model-00006-of-00010.bin",
|
| 136 |
+
"transformer.h.23.attn.c_attn.weight": "pytorch_model-00006-of-00010.bin",
|
| 137 |
+
"transformer.h.23.attn.c_proj.weight": "pytorch_model-00006-of-00010.bin",
|
| 138 |
+
"transformer.h.23.ln_1.weight": "pytorch_model-00006-of-00010.bin",
|
| 139 |
+
"transformer.h.23.ln_2.weight": "pytorch_model-00006-of-00010.bin",
|
| 140 |
+
"transformer.h.23.mlp.c_proj.weight": "pytorch_model-00006-of-00010.bin",
|
| 141 |
+
"transformer.h.23.mlp.w1.weight": "pytorch_model-00006-of-00010.bin",
|
| 142 |
+
"transformer.h.23.mlp.w2.weight": "pytorch_model-00006-of-00010.bin",
|
| 143 |
+
"transformer.h.24.attn.c_attn.bias": "pytorch_model-00006-of-00010.bin",
|
| 144 |
+
"transformer.h.24.attn.c_attn.weight": "pytorch_model-00006-of-00010.bin",
|
| 145 |
+
"transformer.h.24.attn.c_proj.weight": "pytorch_model-00006-of-00010.bin",
|
| 146 |
+
"transformer.h.24.ln_1.weight": "pytorch_model-00006-of-00010.bin",
|
| 147 |
+
"transformer.h.24.ln_2.weight": "pytorch_model-00006-of-00010.bin",
|
| 148 |
+
"transformer.h.24.mlp.c_proj.weight": "pytorch_model-00006-of-00010.bin",
|
| 149 |
+
"transformer.h.24.mlp.w1.weight": "pytorch_model-00006-of-00010.bin",
|
| 150 |
+
"transformer.h.24.mlp.w2.weight": "pytorch_model-00006-of-00010.bin",
|
| 151 |
+
"transformer.h.25.attn.c_attn.bias": "pytorch_model-00006-of-00010.bin",
|
| 152 |
+
"transformer.h.25.attn.c_attn.weight": "pytorch_model-00006-of-00010.bin",
|
| 153 |
+
"transformer.h.25.attn.c_proj.weight": "pytorch_model-00006-of-00010.bin",
|
| 154 |
+
"transformer.h.25.ln_1.weight": "pytorch_model-00006-of-00010.bin",
|
| 155 |
+
"transformer.h.25.ln_2.weight": "pytorch_model-00006-of-00010.bin",
|
| 156 |
+
"transformer.h.25.mlp.c_proj.weight": "pytorch_model-00007-of-00010.bin",
|
| 157 |
+
"transformer.h.25.mlp.w1.weight": "pytorch_model-00006-of-00010.bin",
|
| 158 |
+
"transformer.h.25.mlp.w2.weight": "pytorch_model-00006-of-00010.bin",
|
| 159 |
+
"transformer.h.26.attn.c_attn.bias": "pytorch_model-00007-of-00010.bin",
|
| 160 |
+
"transformer.h.26.attn.c_attn.weight": "pytorch_model-00007-of-00010.bin",
|
| 161 |
+
"transformer.h.26.attn.c_proj.weight": "pytorch_model-00007-of-00010.bin",
|
| 162 |
+
"transformer.h.26.ln_1.weight": "pytorch_model-00007-of-00010.bin",
|
| 163 |
+
"transformer.h.26.ln_2.weight": "pytorch_model-00007-of-00010.bin",
|
| 164 |
+
"transformer.h.26.mlp.c_proj.weight": "pytorch_model-00007-of-00010.bin",
|
| 165 |
+
"transformer.h.26.mlp.w1.weight": "pytorch_model-00007-of-00010.bin",
|
| 166 |
+
"transformer.h.26.mlp.w2.weight": "pytorch_model-00007-of-00010.bin",
|
| 167 |
+
"transformer.h.27.attn.c_attn.bias": "pytorch_model-00007-of-00010.bin",
|
| 168 |
+
"transformer.h.27.attn.c_attn.weight": "pytorch_model-00007-of-00010.bin",
|
| 169 |
+
"transformer.h.27.attn.c_proj.weight": "pytorch_model-00007-of-00010.bin",
|
| 170 |
+
"transformer.h.27.ln_1.weight": "pytorch_model-00007-of-00010.bin",
|
| 171 |
+
"transformer.h.27.ln_2.weight": "pytorch_model-00007-of-00010.bin",
|
| 172 |
+
"transformer.h.27.mlp.c_proj.weight": "pytorch_model-00007-of-00010.bin",
|
| 173 |
+
"transformer.h.27.mlp.w1.weight": "pytorch_model-00007-of-00010.bin",
|
| 174 |
+
"transformer.h.27.mlp.w2.weight": "pytorch_model-00007-of-00010.bin",
|
| 175 |
+
"transformer.h.28.attn.c_attn.bias": "pytorch_model-00007-of-00010.bin",
|
| 176 |
+
"transformer.h.28.attn.c_attn.weight": "pytorch_model-00007-of-00010.bin",
|
| 177 |
+
"transformer.h.28.attn.c_proj.weight": "pytorch_model-00007-of-00010.bin",
|
| 178 |
+
"transformer.h.28.ln_1.weight": "pytorch_model-00007-of-00010.bin",
|
| 179 |
+
"transformer.h.28.ln_2.weight": "pytorch_model-00007-of-00010.bin",
|
| 180 |
+
"transformer.h.28.mlp.c_proj.weight": "pytorch_model-00007-of-00010.bin",
|
| 181 |
+
"transformer.h.28.mlp.w1.weight": "pytorch_model-00007-of-00010.bin",
|
| 182 |
+
"transformer.h.28.mlp.w2.weight": "pytorch_model-00007-of-00010.bin",
|
| 183 |
+
"transformer.h.29.attn.c_attn.bias": "pytorch_model-00007-of-00010.bin",
|
| 184 |
+
"transformer.h.29.attn.c_attn.weight": "pytorch_model-00007-of-00010.bin",
|
| 185 |
+
"transformer.h.29.attn.c_proj.weight": "pytorch_model-00007-of-00010.bin",
|
| 186 |
+
"transformer.h.29.ln_1.weight": "pytorch_model-00007-of-00010.bin",
|
| 187 |
+
"transformer.h.29.ln_2.weight": "pytorch_model-00007-of-00010.bin",
|
| 188 |
+
"transformer.h.29.mlp.c_proj.weight": "pytorch_model-00007-of-00010.bin",
|
| 189 |
+
"transformer.h.29.mlp.w1.weight": "pytorch_model-00007-of-00010.bin",
|
| 190 |
+
"transformer.h.29.mlp.w2.weight": "pytorch_model-00007-of-00010.bin",
|
| 191 |
+
"transformer.h.3.attn.c_attn.bias": "pytorch_model-00002-of-00010.bin",
|
| 192 |
+
"transformer.h.3.attn.c_attn.weight": "pytorch_model-00002-of-00010.bin",
|
| 193 |
+
"transformer.h.3.attn.c_proj.weight": "pytorch_model-00002-of-00010.bin",
|
| 194 |
+
"transformer.h.3.ln_1.weight": "pytorch_model-00002-of-00010.bin",
|
| 195 |
+
"transformer.h.3.ln_2.weight": "pytorch_model-00002-of-00010.bin",
|
| 196 |
+
"transformer.h.3.mlp.c_proj.weight": "pytorch_model-00002-of-00010.bin",
|
| 197 |
+
"transformer.h.3.mlp.w1.weight": "pytorch_model-00002-of-00010.bin",
|
| 198 |
+
"transformer.h.3.mlp.w2.weight": "pytorch_model-00002-of-00010.bin",
|
| 199 |
+
"transformer.h.30.attn.c_attn.bias": "pytorch_model-00007-of-00010.bin",
|
| 200 |
+
"transformer.h.30.attn.c_attn.weight": "pytorch_model-00007-of-00010.bin",
|
| 201 |
+
"transformer.h.30.attn.c_proj.weight": "pytorch_model-00007-of-00010.bin",
|
| 202 |
+
"transformer.h.30.ln_1.weight": "pytorch_model-00007-of-00010.bin",
|
| 203 |
+
"transformer.h.30.ln_2.weight": "pytorch_model-00007-of-00010.bin",
|
| 204 |
+
"transformer.h.30.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 205 |
+
"transformer.h.30.mlp.w1.weight": "pytorch_model-00007-of-00010.bin",
|
| 206 |
+
"transformer.h.30.mlp.w2.weight": "pytorch_model-00008-of-00010.bin",
|
| 207 |
+
"transformer.h.31.attn.c_attn.bias": "pytorch_model-00008-of-00010.bin",
|
| 208 |
+
"transformer.h.31.attn.c_attn.weight": "pytorch_model-00008-of-00010.bin",
|
| 209 |
+
"transformer.h.31.attn.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 210 |
+
"transformer.h.31.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 211 |
+
"transformer.h.31.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 212 |
+
"transformer.h.31.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 213 |
+
"transformer.h.31.mlp.w1.weight": "pytorch_model-00008-of-00010.bin",
|
| 214 |
+
"transformer.h.31.mlp.w2.weight": "pytorch_model-00008-of-00010.bin",
|
| 215 |
+
"transformer.h.4.attn.c_attn.bias": "pytorch_model-00002-of-00010.bin",
|
| 216 |
+
"transformer.h.4.attn.c_attn.weight": "pytorch_model-00002-of-00010.bin",
|
| 217 |
+
"transformer.h.4.attn.c_proj.weight": "pytorch_model-00002-of-00010.bin",
|
| 218 |
+
"transformer.h.4.ln_1.weight": "pytorch_model-00002-of-00010.bin",
|
| 219 |
+
"transformer.h.4.ln_2.weight": "pytorch_model-00002-of-00010.bin",
|
| 220 |
+
"transformer.h.4.mlp.c_proj.weight": "pytorch_model-00002-of-00010.bin",
|
| 221 |
+
"transformer.h.4.mlp.w1.weight": "pytorch_model-00002-of-00010.bin",
|
| 222 |
+
"transformer.h.4.mlp.w2.weight": "pytorch_model-00002-of-00010.bin",
|
| 223 |
+
"transformer.h.5.attn.c_attn.bias": "pytorch_model-00002-of-00010.bin",
|
| 224 |
+
"transformer.h.5.attn.c_attn.weight": "pytorch_model-00002-of-00010.bin",
|
| 225 |
+
"transformer.h.5.attn.c_proj.weight": "pytorch_model-00002-of-00010.bin",
|
| 226 |
+
"transformer.h.5.ln_1.weight": "pytorch_model-00002-of-00010.bin",
|
| 227 |
+
"transformer.h.5.ln_2.weight": "pytorch_model-00002-of-00010.bin",
|
| 228 |
+
"transformer.h.5.mlp.c_proj.weight": "pytorch_model-00002-of-00010.bin",
|
| 229 |
+
"transformer.h.5.mlp.w1.weight": "pytorch_model-00002-of-00010.bin",
|
| 230 |
+
"transformer.h.5.mlp.w2.weight": "pytorch_model-00002-of-00010.bin",
|
| 231 |
+
"transformer.h.6.attn.c_attn.bias": "pytorch_model-00002-of-00010.bin",
|
| 232 |
+
"transformer.h.6.attn.c_attn.weight": "pytorch_model-00002-of-00010.bin",
|
| 233 |
+
"transformer.h.6.attn.c_proj.weight": "pytorch_model-00002-of-00010.bin",
|
| 234 |
+
"transformer.h.6.ln_1.weight": "pytorch_model-00002-of-00010.bin",
|
| 235 |
+
"transformer.h.6.ln_2.weight": "pytorch_model-00002-of-00010.bin",
|
| 236 |
+
"transformer.h.6.mlp.c_proj.weight": "pytorch_model-00003-of-00010.bin",
|
| 237 |
+
"transformer.h.6.mlp.w1.weight": "pytorch_model-00002-of-00010.bin",
|
| 238 |
+
"transformer.h.6.mlp.w2.weight": "pytorch_model-00003-of-00010.bin",
|
| 239 |
+
"transformer.h.7.attn.c_attn.bias": "pytorch_model-00003-of-00010.bin",
|
| 240 |
+
"transformer.h.7.attn.c_attn.weight": "pytorch_model-00003-of-00010.bin",
|
| 241 |
+
"transformer.h.7.attn.c_proj.weight": "pytorch_model-00003-of-00010.bin",
|
| 242 |
+
"transformer.h.7.ln_1.weight": "pytorch_model-00003-of-00010.bin",
|
| 243 |
+
"transformer.h.7.ln_2.weight": "pytorch_model-00003-of-00010.bin",
|
| 244 |
+
"transformer.h.7.mlp.c_proj.weight": "pytorch_model-00003-of-00010.bin",
|
| 245 |
+
"transformer.h.7.mlp.w1.weight": "pytorch_model-00003-of-00010.bin",
|
| 246 |
+
"transformer.h.7.mlp.w2.weight": "pytorch_model-00003-of-00010.bin",
|
| 247 |
+
"transformer.h.8.attn.c_attn.bias": "pytorch_model-00003-of-00010.bin",
|
| 248 |
+
"transformer.h.8.attn.c_attn.weight": "pytorch_model-00003-of-00010.bin",
|
| 249 |
+
"transformer.h.8.attn.c_proj.weight": "pytorch_model-00003-of-00010.bin",
|
| 250 |
+
"transformer.h.8.ln_1.weight": "pytorch_model-00003-of-00010.bin",
|
| 251 |
+
"transformer.h.8.ln_2.weight": "pytorch_model-00003-of-00010.bin",
|
| 252 |
+
"transformer.h.8.mlp.c_proj.weight": "pytorch_model-00003-of-00010.bin",
|
| 253 |
+
"transformer.h.8.mlp.w1.weight": "pytorch_model-00003-of-00010.bin",
|
| 254 |
+
"transformer.h.8.mlp.w2.weight": "pytorch_model-00003-of-00010.bin",
|
| 255 |
+
"transformer.h.9.attn.c_attn.bias": "pytorch_model-00003-of-00010.bin",
|
| 256 |
+
"transformer.h.9.attn.c_attn.weight": "pytorch_model-00003-of-00010.bin",
|
| 257 |
+
"transformer.h.9.attn.c_proj.weight": "pytorch_model-00003-of-00010.bin",
|
| 258 |
+
"transformer.h.9.ln_1.weight": "pytorch_model-00003-of-00010.bin",
|
| 259 |
+
"transformer.h.9.ln_2.weight": "pytorch_model-00003-of-00010.bin",
|
| 260 |
+
"transformer.h.9.mlp.c_proj.weight": "pytorch_model-00003-of-00010.bin",
|
| 261 |
+
"transformer.h.9.mlp.w1.weight": "pytorch_model-00003-of-00010.bin",
|
| 262 |
+
"transformer.h.9.mlp.w2.weight": "pytorch_model-00003-of-00010.bin",
|
| 263 |
+
"transformer.ln_f.weight": "pytorch_model-00008-of-00010.bin",
|
| 264 |
+
"transformer.visual.attn_pool.attn.in_proj_bias": "pytorch_model-00010-of-00010.bin",
|
| 265 |
+
"transformer.visual.attn_pool.attn.in_proj_weight": "pytorch_model-00010-of-00010.bin",
|
| 266 |
+
"transformer.visual.attn_pool.attn.out_proj.bias": "pytorch_model-00010-of-00010.bin",
|
| 267 |
+
"transformer.visual.attn_pool.attn.out_proj.weight": "pytorch_model-00010-of-00010.bin",
|
| 268 |
+
"transformer.visual.attn_pool.kv_proj.weight": "pytorch_model-00010-of-00010.bin",
|
| 269 |
+
"transformer.visual.attn_pool.ln_kv.bias": "pytorch_model-00010-of-00010.bin",
|
| 270 |
+
"transformer.visual.attn_pool.ln_kv.weight": "pytorch_model-00010-of-00010.bin",
|
| 271 |
+
"transformer.visual.attn_pool.ln_q.bias": "pytorch_model-00010-of-00010.bin",
|
| 272 |
+
"transformer.visual.attn_pool.ln_q.weight": "pytorch_model-00010-of-00010.bin",
|
| 273 |
+
"transformer.visual.attn_pool.pos_embed": "pytorch_model-00010-of-00010.bin",
|
| 274 |
+
"transformer.visual.attn_pool.query": "pytorch_model-00010-of-00010.bin",
|
| 275 |
+
"transformer.visual.conv1.weight": "pytorch_model-00008-of-00010.bin",
|
| 276 |
+
"transformer.visual.ln_post.bias": "pytorch_model-00010-of-00010.bin",
|
| 277 |
+
"transformer.visual.ln_post.weight": "pytorch_model-00010-of-00010.bin",
|
| 278 |
+
"transformer.visual.ln_pre.bias": "pytorch_model-00008-of-00010.bin",
|
| 279 |
+
"transformer.visual.ln_pre.weight": "pytorch_model-00008-of-00010.bin",
|
| 280 |
+
"transformer.visual.positional_embedding": "pytorch_model-00008-of-00010.bin",
|
| 281 |
+
"transformer.visual.proj": "pytorch_model-00008-of-00010.bin",
|
| 282 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 283 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 284 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 285 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 286 |
+
"transformer.visual.transformer.resblocks.0.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 287 |
+
"transformer.visual.transformer.resblocks.0.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 288 |
+
"transformer.visual.transformer.resblocks.0.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 289 |
+
"transformer.visual.transformer.resblocks.0.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 290 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 291 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 292 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 293 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 294 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 295 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 296 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 297 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 298 |
+
"transformer.visual.transformer.resblocks.1.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 299 |
+
"transformer.visual.transformer.resblocks.1.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 300 |
+
"transformer.visual.transformer.resblocks.1.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 301 |
+
"transformer.visual.transformer.resblocks.1.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 302 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 303 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 304 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 305 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 306 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 307 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 308 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 309 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 310 |
+
"transformer.visual.transformer.resblocks.10.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 311 |
+
"transformer.visual.transformer.resblocks.10.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 312 |
+
"transformer.visual.transformer.resblocks.10.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 313 |
+
"transformer.visual.transformer.resblocks.10.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 314 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 315 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 316 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 317 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 318 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 319 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 320 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 321 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 322 |
+
"transformer.visual.transformer.resblocks.11.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 323 |
+
"transformer.visual.transformer.resblocks.11.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 324 |
+
"transformer.visual.transformer.resblocks.11.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 325 |
+
"transformer.visual.transformer.resblocks.11.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 326 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 327 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 328 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 329 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 330 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 331 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 332 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 333 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 334 |
+
"transformer.visual.transformer.resblocks.12.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 335 |
+
"transformer.visual.transformer.resblocks.12.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 336 |
+
"transformer.visual.transformer.resblocks.12.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 337 |
+
"transformer.visual.transformer.resblocks.12.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 338 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 339 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 340 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 341 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 342 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 343 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 344 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 345 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 346 |
+
"transformer.visual.transformer.resblocks.13.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 347 |
+
"transformer.visual.transformer.resblocks.13.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 348 |
+
"transformer.visual.transformer.resblocks.13.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 349 |
+
"transformer.visual.transformer.resblocks.13.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 350 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 351 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 352 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 353 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 354 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 355 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 356 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 357 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 358 |
+
"transformer.visual.transformer.resblocks.14.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 359 |
+
"transformer.visual.transformer.resblocks.14.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 360 |
+
"transformer.visual.transformer.resblocks.14.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 361 |
+
"transformer.visual.transformer.resblocks.14.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 362 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 363 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 364 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 365 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 366 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 367 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 368 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 369 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 370 |
+
"transformer.visual.transformer.resblocks.15.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 371 |
+
"transformer.visual.transformer.resblocks.15.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 372 |
+
"transformer.visual.transformer.resblocks.15.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 373 |
+
"transformer.visual.transformer.resblocks.15.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 374 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 375 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 376 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 377 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 378 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 379 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 380 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 381 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 382 |
+
"transformer.visual.transformer.resblocks.16.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 383 |
+
"transformer.visual.transformer.resblocks.16.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 384 |
+
"transformer.visual.transformer.resblocks.16.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 385 |
+
"transformer.visual.transformer.resblocks.16.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 386 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 387 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 388 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 389 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 390 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 391 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 392 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 393 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 394 |
+
"transformer.visual.transformer.resblocks.17.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 395 |
+
"transformer.visual.transformer.resblocks.17.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 396 |
+
"transformer.visual.transformer.resblocks.17.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 397 |
+
"transformer.visual.transformer.resblocks.17.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 398 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 399 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 400 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 401 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 402 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 403 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 404 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 405 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 406 |
+
"transformer.visual.transformer.resblocks.18.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 407 |
+
"transformer.visual.transformer.resblocks.18.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 408 |
+
"transformer.visual.transformer.resblocks.18.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 409 |
+
"transformer.visual.transformer.resblocks.18.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 410 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 411 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 412 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 413 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 414 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 415 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 416 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 417 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 418 |
+
"transformer.visual.transformer.resblocks.19.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 419 |
+
"transformer.visual.transformer.resblocks.19.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 420 |
+
"transformer.visual.transformer.resblocks.19.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 421 |
+
"transformer.visual.transformer.resblocks.19.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 422 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 423 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 424 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 425 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 426 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 427 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 428 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 429 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 430 |
+
"transformer.visual.transformer.resblocks.2.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 431 |
+
"transformer.visual.transformer.resblocks.2.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 432 |
+
"transformer.visual.transformer.resblocks.2.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 433 |
+
"transformer.visual.transformer.resblocks.2.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 434 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 435 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 436 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 437 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 438 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 439 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 440 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 441 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 442 |
+
"transformer.visual.transformer.resblocks.20.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 443 |
+
"transformer.visual.transformer.resblocks.20.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 444 |
+
"transformer.visual.transformer.resblocks.20.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 445 |
+
"transformer.visual.transformer.resblocks.20.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 446 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 447 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 448 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 449 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 450 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 451 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 452 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 453 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 454 |
+
"transformer.visual.transformer.resblocks.21.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 455 |
+
"transformer.visual.transformer.resblocks.21.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 456 |
+
"transformer.visual.transformer.resblocks.21.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 457 |
+
"transformer.visual.transformer.resblocks.21.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 458 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 459 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 460 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 461 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 462 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 463 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 464 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 465 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 466 |
+
"transformer.visual.transformer.resblocks.22.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 467 |
+
"transformer.visual.transformer.resblocks.22.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 468 |
+
"transformer.visual.transformer.resblocks.22.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 469 |
+
"transformer.visual.transformer.resblocks.22.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 470 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 471 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 472 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 473 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 474 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 475 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 476 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 477 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 478 |
+
"transformer.visual.transformer.resblocks.23.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 479 |
+
"transformer.visual.transformer.resblocks.23.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 480 |
+
"transformer.visual.transformer.resblocks.23.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 481 |
+
"transformer.visual.transformer.resblocks.23.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 482 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 483 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 484 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 485 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 486 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 487 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 488 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 489 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 490 |
+
"transformer.visual.transformer.resblocks.24.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 491 |
+
"transformer.visual.transformer.resblocks.24.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 492 |
+
"transformer.visual.transformer.resblocks.24.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 493 |
+
"transformer.visual.transformer.resblocks.24.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 494 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 495 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 496 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 497 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 498 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 499 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 500 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 501 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 502 |
+
"transformer.visual.transformer.resblocks.25.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 503 |
+
"transformer.visual.transformer.resblocks.25.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 504 |
+
"transformer.visual.transformer.resblocks.25.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 505 |
+
"transformer.visual.transformer.resblocks.25.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 506 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 507 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 508 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 509 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 510 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 511 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 512 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 513 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 514 |
+
"transformer.visual.transformer.resblocks.26.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 515 |
+
"transformer.visual.transformer.resblocks.26.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 516 |
+
"transformer.visual.transformer.resblocks.26.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 517 |
+
"transformer.visual.transformer.resblocks.26.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 518 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 519 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 520 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 521 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 522 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 523 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 524 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 525 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 526 |
+
"transformer.visual.transformer.resblocks.27.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 527 |
+
"transformer.visual.transformer.resblocks.27.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 528 |
+
"transformer.visual.transformer.resblocks.27.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 529 |
+
"transformer.visual.transformer.resblocks.27.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 530 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 531 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 532 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 533 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 534 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 535 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 536 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 537 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 538 |
+
"transformer.visual.transformer.resblocks.28.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 539 |
+
"transformer.visual.transformer.resblocks.28.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 540 |
+
"transformer.visual.transformer.resblocks.28.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 541 |
+
"transformer.visual.transformer.resblocks.28.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 542 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 543 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 544 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 545 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 546 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 547 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 548 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 549 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 550 |
+
"transformer.visual.transformer.resblocks.29.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 551 |
+
"transformer.visual.transformer.resblocks.29.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 552 |
+
"transformer.visual.transformer.resblocks.29.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 553 |
+
"transformer.visual.transformer.resblocks.29.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 554 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 555 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 556 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 557 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 558 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 559 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 560 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 561 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 562 |
+
"transformer.visual.transformer.resblocks.3.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 563 |
+
"transformer.visual.transformer.resblocks.3.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 564 |
+
"transformer.visual.transformer.resblocks.3.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 565 |
+
"transformer.visual.transformer.resblocks.3.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 566 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 567 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 568 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 569 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 570 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 571 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 572 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 573 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 574 |
+
"transformer.visual.transformer.resblocks.30.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 575 |
+
"transformer.visual.transformer.resblocks.30.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 576 |
+
"transformer.visual.transformer.resblocks.30.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 577 |
+
"transformer.visual.transformer.resblocks.30.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 578 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 579 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 580 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 581 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 582 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 583 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 584 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 585 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 586 |
+
"transformer.visual.transformer.resblocks.31.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 587 |
+
"transformer.visual.transformer.resblocks.31.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 588 |
+
"transformer.visual.transformer.resblocks.31.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 589 |
+
"transformer.visual.transformer.resblocks.31.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 590 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 591 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 592 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 593 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 594 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 595 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 596 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 597 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 598 |
+
"transformer.visual.transformer.resblocks.32.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 599 |
+
"transformer.visual.transformer.resblocks.32.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 600 |
+
"transformer.visual.transformer.resblocks.32.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 601 |
+
"transformer.visual.transformer.resblocks.32.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 602 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 603 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 604 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 605 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 606 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 607 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 608 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 609 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 610 |
+
"transformer.visual.transformer.resblocks.33.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 611 |
+
"transformer.visual.transformer.resblocks.33.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 612 |
+
"transformer.visual.transformer.resblocks.33.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 613 |
+
"transformer.visual.transformer.resblocks.33.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 614 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 615 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 616 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 617 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 618 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 619 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 620 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 621 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 622 |
+
"transformer.visual.transformer.resblocks.34.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 623 |
+
"transformer.visual.transformer.resblocks.34.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 624 |
+
"transformer.visual.transformer.resblocks.34.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 625 |
+
"transformer.visual.transformer.resblocks.34.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 626 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 627 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 628 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 629 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 630 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 631 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 632 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 633 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 634 |
+
"transformer.visual.transformer.resblocks.35.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 635 |
+
"transformer.visual.transformer.resblocks.35.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 636 |
+
"transformer.visual.transformer.resblocks.35.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 637 |
+
"transformer.visual.transformer.resblocks.35.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 638 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 639 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 640 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 641 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 642 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 643 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 644 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 645 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 646 |
+
"transformer.visual.transformer.resblocks.36.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 647 |
+
"transformer.visual.transformer.resblocks.36.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 648 |
+
"transformer.visual.transformer.resblocks.36.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 649 |
+
"transformer.visual.transformer.resblocks.36.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 650 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 651 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 652 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 653 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 654 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 655 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 656 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 657 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 658 |
+
"transformer.visual.transformer.resblocks.37.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 659 |
+
"transformer.visual.transformer.resblocks.37.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 660 |
+
"transformer.visual.transformer.resblocks.37.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 661 |
+
"transformer.visual.transformer.resblocks.37.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 662 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 663 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 664 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 665 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 666 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 667 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 668 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 669 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 670 |
+
"transformer.visual.transformer.resblocks.38.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 671 |
+
"transformer.visual.transformer.resblocks.38.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 672 |
+
"transformer.visual.transformer.resblocks.38.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 673 |
+
"transformer.visual.transformer.resblocks.38.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 674 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 675 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 676 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 677 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 678 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 679 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 680 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 681 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 682 |
+
"transformer.visual.transformer.resblocks.39.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 683 |
+
"transformer.visual.transformer.resblocks.39.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 684 |
+
"transformer.visual.transformer.resblocks.39.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 685 |
+
"transformer.visual.transformer.resblocks.39.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 686 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 687 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 688 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 689 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 690 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 691 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 692 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 693 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 694 |
+
"transformer.visual.transformer.resblocks.4.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 695 |
+
"transformer.visual.transformer.resblocks.4.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 696 |
+
"transformer.visual.transformer.resblocks.4.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 697 |
+
"transformer.visual.transformer.resblocks.4.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 698 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 699 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 700 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 701 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 702 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 703 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 704 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 705 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 706 |
+
"transformer.visual.transformer.resblocks.40.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 707 |
+
"transformer.visual.transformer.resblocks.40.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 708 |
+
"transformer.visual.transformer.resblocks.40.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 709 |
+
"transformer.visual.transformer.resblocks.40.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 710 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 711 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 712 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 713 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 714 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 715 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 716 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 717 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 718 |
+
"transformer.visual.transformer.resblocks.41.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 719 |
+
"transformer.visual.transformer.resblocks.41.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 720 |
+
"transformer.visual.transformer.resblocks.41.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 721 |
+
"transformer.visual.transformer.resblocks.41.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 722 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 723 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 724 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 725 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 726 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 727 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 728 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 729 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 730 |
+
"transformer.visual.transformer.resblocks.42.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 731 |
+
"transformer.visual.transformer.resblocks.42.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 732 |
+
"transformer.visual.transformer.resblocks.42.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 733 |
+
"transformer.visual.transformer.resblocks.42.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 734 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 735 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 736 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 737 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 738 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 739 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 740 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj.bias": "pytorch_model-00009-of-00010.bin",
|
| 741 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj.weight": "pytorch_model-00009-of-00010.bin",
|
| 742 |
+
"transformer.visual.transformer.resblocks.43.ln_1.bias": "pytorch_model-00009-of-00010.bin",
|
| 743 |
+
"transformer.visual.transformer.resblocks.43.ln_1.weight": "pytorch_model-00009-of-00010.bin",
|
| 744 |
+
"transformer.visual.transformer.resblocks.43.ln_2.bias": "pytorch_model-00009-of-00010.bin",
|
| 745 |
+
"transformer.visual.transformer.resblocks.43.ln_2.weight": "pytorch_model-00009-of-00010.bin",
|
| 746 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc.bias": "pytorch_model-00009-of-00010.bin",
|
| 747 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc.weight": "pytorch_model-00009-of-00010.bin",
|
| 748 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj.bias": "pytorch_model-00010-of-00010.bin",
|
| 749 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj.weight": "pytorch_model-00010-of-00010.bin",
|
| 750 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj.bias": "pytorch_model-00010-of-00010.bin",
|
| 751 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj.weight": "pytorch_model-00010-of-00010.bin",
|
| 752 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj.bias": "pytorch_model-00010-of-00010.bin",
|
| 753 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj.weight": "pytorch_model-00010-of-00010.bin",
|
| 754 |
+
"transformer.visual.transformer.resblocks.44.ln_1.bias": "pytorch_model-00010-of-00010.bin",
|
| 755 |
+
"transformer.visual.transformer.resblocks.44.ln_1.weight": "pytorch_model-00010-of-00010.bin",
|
| 756 |
+
"transformer.visual.transformer.resblocks.44.ln_2.bias": "pytorch_model-00010-of-00010.bin",
|
| 757 |
+
"transformer.visual.transformer.resblocks.44.ln_2.weight": "pytorch_model-00010-of-00010.bin",
|
| 758 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc.bias": "pytorch_model-00010-of-00010.bin",
|
| 759 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc.weight": "pytorch_model-00010-of-00010.bin",
|
| 760 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj.bias": "pytorch_model-00010-of-00010.bin",
|
| 761 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj.weight": "pytorch_model-00010-of-00010.bin",
|
| 762 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj.bias": "pytorch_model-00010-of-00010.bin",
|
| 763 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj.weight": "pytorch_model-00010-of-00010.bin",
|
| 764 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj.bias": "pytorch_model-00010-of-00010.bin",
|
| 765 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj.weight": "pytorch_model-00010-of-00010.bin",
|
| 766 |
+
"transformer.visual.transformer.resblocks.45.ln_1.bias": "pytorch_model-00010-of-00010.bin",
|
| 767 |
+
"transformer.visual.transformer.resblocks.45.ln_1.weight": "pytorch_model-00010-of-00010.bin",
|
| 768 |
+
"transformer.visual.transformer.resblocks.45.ln_2.bias": "pytorch_model-00010-of-00010.bin",
|
| 769 |
+
"transformer.visual.transformer.resblocks.45.ln_2.weight": "pytorch_model-00010-of-00010.bin",
|
| 770 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc.bias": "pytorch_model-00010-of-00010.bin",
|
| 771 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc.weight": "pytorch_model-00010-of-00010.bin",
|
| 772 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj.bias": "pytorch_model-00010-of-00010.bin",
|
| 773 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj.weight": "pytorch_model-00010-of-00010.bin",
|
| 774 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj.bias": "pytorch_model-00010-of-00010.bin",
|
| 775 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj.weight": "pytorch_model-00010-of-00010.bin",
|
| 776 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj.bias": "pytorch_model-00010-of-00010.bin",
|
| 777 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj.weight": "pytorch_model-00010-of-00010.bin",
|
| 778 |
+
"transformer.visual.transformer.resblocks.46.ln_1.bias": "pytorch_model-00010-of-00010.bin",
|
| 779 |
+
"transformer.visual.transformer.resblocks.46.ln_1.weight": "pytorch_model-00010-of-00010.bin",
|
| 780 |
+
"transformer.visual.transformer.resblocks.46.ln_2.bias": "pytorch_model-00010-of-00010.bin",
|
| 781 |
+
"transformer.visual.transformer.resblocks.46.ln_2.weight": "pytorch_model-00010-of-00010.bin",
|
| 782 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc.bias": "pytorch_model-00010-of-00010.bin",
|
| 783 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc.weight": "pytorch_model-00010-of-00010.bin",
|
| 784 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj.bias": "pytorch_model-00010-of-00010.bin",
|
| 785 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj.weight": "pytorch_model-00010-of-00010.bin",
|
| 786 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj.bias": "pytorch_model-00010-of-00010.bin",
|
| 787 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj.weight": "pytorch_model-00010-of-00010.bin",
|
| 788 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj.bias": "pytorch_model-00010-of-00010.bin",
|
| 789 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj.weight": "pytorch_model-00010-of-00010.bin",
|
| 790 |
+
"transformer.visual.transformer.resblocks.47.ln_1.bias": "pytorch_model-00010-of-00010.bin",
|
| 791 |
+
"transformer.visual.transformer.resblocks.47.ln_1.weight": "pytorch_model-00010-of-00010.bin",
|
| 792 |
+
"transformer.visual.transformer.resblocks.47.ln_2.bias": "pytorch_model-00010-of-00010.bin",
|
| 793 |
+
"transformer.visual.transformer.resblocks.47.ln_2.weight": "pytorch_model-00010-of-00010.bin",
|
| 794 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc.bias": "pytorch_model-00010-of-00010.bin",
|
| 795 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc.weight": "pytorch_model-00010-of-00010.bin",
|
| 796 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj.bias": "pytorch_model-00010-of-00010.bin",
|
| 797 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj.weight": "pytorch_model-00010-of-00010.bin",
|
| 798 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 799 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 800 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 801 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 802 |
+
"transformer.visual.transformer.resblocks.5.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 803 |
+
"transformer.visual.transformer.resblocks.5.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 804 |
+
"transformer.visual.transformer.resblocks.5.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 805 |
+
"transformer.visual.transformer.resblocks.5.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 806 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 807 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 808 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 809 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 810 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 811 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 812 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 813 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 814 |
+
"transformer.visual.transformer.resblocks.6.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 815 |
+
"transformer.visual.transformer.resblocks.6.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 816 |
+
"transformer.visual.transformer.resblocks.6.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 817 |
+
"transformer.visual.transformer.resblocks.6.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 818 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 819 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 820 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 821 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 822 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 823 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 824 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 825 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 826 |
+
"transformer.visual.transformer.resblocks.7.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 827 |
+
"transformer.visual.transformer.resblocks.7.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 828 |
+
"transformer.visual.transformer.resblocks.7.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 829 |
+
"transformer.visual.transformer.resblocks.7.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 830 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 831 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 832 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 833 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 834 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 835 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 836 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 837 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 838 |
+
"transformer.visual.transformer.resblocks.8.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 839 |
+
"transformer.visual.transformer.resblocks.8.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 840 |
+
"transformer.visual.transformer.resblocks.8.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 841 |
+
"transformer.visual.transformer.resblocks.8.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 842 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 843 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 844 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 845 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 846 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 847 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 848 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 849 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 850 |
+
"transformer.visual.transformer.resblocks.9.ln_1.bias": "pytorch_model-00008-of-00010.bin",
|
| 851 |
+
"transformer.visual.transformer.resblocks.9.ln_1.weight": "pytorch_model-00008-of-00010.bin",
|
| 852 |
+
"transformer.visual.transformer.resblocks.9.ln_2.bias": "pytorch_model-00008-of-00010.bin",
|
| 853 |
+
"transformer.visual.transformer.resblocks.9.ln_2.weight": "pytorch_model-00008-of-00010.bin",
|
| 854 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc.bias": "pytorch_model-00008-of-00010.bin",
|
| 855 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc.weight": "pytorch_model-00008-of-00010.bin",
|
| 856 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj.bias": "pytorch_model-00008-of-00010.bin",
|
| 857 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj.weight": "pytorch_model-00008-of-00010.bin",
|
| 858 |
+
"transformer.wte.weight": "pytorch_model-00001-of-00010.bin"
|
| 859 |
+
}
|
| 860 |
+
}
|
qwen.tiktoken
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
qwen_generation_utils.py
ADDED
|
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Alibaba Cloud.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the license found in the
|
| 4 |
+
# LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
"""Generation support."""
|
| 7 |
+
|
| 8 |
+
from typing import Tuple, List, Union, Iterable, Dict
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from transformers import PreTrainedTokenizer
|
| 14 |
+
from transformers import logging
|
| 15 |
+
from transformers.generation import LogitsProcessor
|
| 16 |
+
|
| 17 |
+
logger = logging.get_logger(__name__)
|
| 18 |
+
|
| 19 |
+
# Types.
|
| 20 |
+
HistoryType = List[Tuple[str, str]]
|
| 21 |
+
TokensType = List[int]
|
| 22 |
+
BatchTokensType = List[List[int]]
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
|
| 26 |
+
for tokens in batch:
|
| 27 |
+
context_length = len(tokens)
|
| 28 |
+
if context_length < seq_length:
|
| 29 |
+
tokens.extend([pad_id] * (seq_length - context_length))
|
| 30 |
+
return batch
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def get_ltor_masks_and_position_ids(
|
| 34 |
+
data,
|
| 35 |
+
eod_token,
|
| 36 |
+
reset_position_ids,
|
| 37 |
+
reset_attention_mask,
|
| 38 |
+
eod_mask_loss,
|
| 39 |
+
):
|
| 40 |
+
"""Build masks and position id for left to right model."""
|
| 41 |
+
|
| 42 |
+
# Extract batch size and sequence length.
|
| 43 |
+
micro_batch_size, seq_length = data.size()
|
| 44 |
+
|
| 45 |
+
# Attention mask (lower triangular).
|
| 46 |
+
if reset_attention_mask:
|
| 47 |
+
att_mask_batch = micro_batch_size
|
| 48 |
+
else:
|
| 49 |
+
att_mask_batch = 1
|
| 50 |
+
attention_mask = torch.tril(
|
| 51 |
+
torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
|
| 52 |
+
).view(att_mask_batch, 1, seq_length, seq_length)
|
| 53 |
+
|
| 54 |
+
# Loss mask.
|
| 55 |
+
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
|
| 56 |
+
if eod_mask_loss:
|
| 57 |
+
loss_mask[data == eod_token] = 0.0
|
| 58 |
+
|
| 59 |
+
# Position ids.
|
| 60 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
|
| 61 |
+
position_ids = position_ids.unsqueeze(0).expand_as(data)
|
| 62 |
+
# We need to clone as the ids will be modifed based on batch index.
|
| 63 |
+
if reset_position_ids:
|
| 64 |
+
position_ids = position_ids.clone()
|
| 65 |
+
|
| 66 |
+
if reset_position_ids or reset_attention_mask:
|
| 67 |
+
# Loop through the batches:
|
| 68 |
+
for b in range(micro_batch_size):
|
| 69 |
+
|
| 70 |
+
# Find indecies where EOD token is.
|
| 71 |
+
eod_index = position_ids[b, data[b] == eod_token]
|
| 72 |
+
# Detach indecies from positions if going to modify positions.
|
| 73 |
+
if reset_position_ids:
|
| 74 |
+
eod_index = eod_index.clone()
|
| 75 |
+
|
| 76 |
+
# Loop through EOD indecies:
|
| 77 |
+
prev_index = 0
|
| 78 |
+
for j in range(eod_index.size()[0]):
|
| 79 |
+
i = eod_index[j]
|
| 80 |
+
# Mask attention loss.
|
| 81 |
+
if reset_attention_mask:
|
| 82 |
+
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
|
| 83 |
+
# Reset positions.
|
| 84 |
+
if reset_position_ids:
|
| 85 |
+
position_ids[b, (i + 1) :] -= i + 1 - prev_index
|
| 86 |
+
prev_index = i + 1
|
| 87 |
+
|
| 88 |
+
# Convert attention mask to binary:
|
| 89 |
+
attention_mask = attention_mask < 0.5
|
| 90 |
+
|
| 91 |
+
return attention_mask, loss_mask, position_ids
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_batch(context_tokens: torch.LongTensor, eod_id: int):
|
| 95 |
+
"""Generate batch from context tokens."""
|
| 96 |
+
# Move to GPU.
|
| 97 |
+
tokens = context_tokens.contiguous().to(context_tokens.device)
|
| 98 |
+
# Get the attention mask and postition ids.
|
| 99 |
+
attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
|
| 100 |
+
tokens,
|
| 101 |
+
eod_id,
|
| 102 |
+
reset_position_ids=False,
|
| 103 |
+
reset_attention_mask=False,
|
| 104 |
+
eod_mask_loss=False,
|
| 105 |
+
)
|
| 106 |
+
return tokens, attention_mask, position_ids
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def get_stop_words_ids(chat_format, tokenizer):
|
| 110 |
+
if chat_format == "raw":
|
| 111 |
+
stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
|
| 112 |
+
elif chat_format == "chatml":
|
| 113 |
+
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
|
| 114 |
+
else:
|
| 115 |
+
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
| 116 |
+
return stop_words_ids
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def make_context(
|
| 120 |
+
tokenizer: PreTrainedTokenizer,
|
| 121 |
+
query: str,
|
| 122 |
+
history: List[Tuple[str, str]] = None,
|
| 123 |
+
system: str = "",
|
| 124 |
+
max_window_size: int = 6144,
|
| 125 |
+
chat_format: str = "chatml",
|
| 126 |
+
):
|
| 127 |
+
audio_info = None
|
| 128 |
+
if history is None:
|
| 129 |
+
history = []
|
| 130 |
+
|
| 131 |
+
if chat_format == "chatml":
|
| 132 |
+
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
| 133 |
+
im_start_tokens = [tokenizer.im_start_id]
|
| 134 |
+
im_end_tokens = [tokenizer.im_end_id]
|
| 135 |
+
nl_tokens = tokenizer.encode("\n")
|
| 136 |
+
|
| 137 |
+
def _tokenize_str(role, content):
|
| 138 |
+
# import ipdb; ipdb.set_trace()
|
| 139 |
+
audio_info = tokenizer.process_audio(content)
|
| 140 |
+
return f"{role}\n{content}", tokenizer.encode(
|
| 141 |
+
role, allowed_special=set(tokenizer.AUDIO_ST), audio_info=audio_info
|
| 142 |
+
) + nl_tokens + tokenizer.encode(content, allowed_special=set(tokenizer.AUDIO_ST), audio_info=audio_info),audio_info
|
| 143 |
+
|
| 144 |
+
system_text, system_tokens_part, audio_info = _tokenize_str("system", system)
|
| 145 |
+
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
| 146 |
+
|
| 147 |
+
raw_text = ""
|
| 148 |
+
context_tokens = []
|
| 149 |
+
|
| 150 |
+
for turn_query, turn_response in reversed(history):
|
| 151 |
+
query_text, query_tokens_part, _ = _tokenize_str("user", turn_query)
|
| 152 |
+
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
| 153 |
+
if turn_response is not None:
|
| 154 |
+
response_text, response_tokens_part, _ = _tokenize_str(
|
| 155 |
+
"assistant", turn_response
|
| 156 |
+
)
|
| 157 |
+
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
| 158 |
+
|
| 159 |
+
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
| 160 |
+
prev_chat = (
|
| 161 |
+
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
| 162 |
+
)
|
| 163 |
+
else:
|
| 164 |
+
next_context_tokens = nl_tokens + query_tokens + nl_tokens
|
| 165 |
+
prev_chat = f"\n{im_start}{query_text}{im_end}\n"
|
| 166 |
+
|
| 167 |
+
current_context_size = (
|
| 168 |
+
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
| 169 |
+
)
|
| 170 |
+
if current_context_size < max_window_size:
|
| 171 |
+
context_tokens = next_context_tokens + context_tokens
|
| 172 |
+
raw_text = prev_chat + raw_text
|
| 173 |
+
else:
|
| 174 |
+
break
|
| 175 |
+
|
| 176 |
+
context_tokens = system_tokens + context_tokens
|
| 177 |
+
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
| 178 |
+
context_tokens += (
|
| 179 |
+
nl_tokens
|
| 180 |
+
+ im_start_tokens
|
| 181 |
+
+ _tokenize_str("user", query)[1]
|
| 182 |
+
+ im_end_tokens
|
| 183 |
+
+ nl_tokens
|
| 184 |
+
+ im_start_tokens
|
| 185 |
+
+ tokenizer.encode("assistant")
|
| 186 |
+
+ nl_tokens
|
| 187 |
+
)
|
| 188 |
+
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
|
| 189 |
+
print(raw_text)
|
| 190 |
+
audio_info = tokenizer.process_audio(raw_text)
|
| 191 |
+
|
| 192 |
+
elif chat_format == "raw":
|
| 193 |
+
raw_text = query
|
| 194 |
+
context_tokens = tokenizer.encode(raw_text)
|
| 195 |
+
else:
|
| 196 |
+
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
| 197 |
+
|
| 198 |
+
return raw_text, context_tokens, audio_info
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def _decode_default(
|
| 202 |
+
tokens: List[int],
|
| 203 |
+
*,
|
| 204 |
+
stop_words: List[str],
|
| 205 |
+
eod_words: List[str],
|
| 206 |
+
tokenizer: PreTrainedTokenizer,
|
| 207 |
+
raw_text_len: int,
|
| 208 |
+
verbose: bool = False,
|
| 209 |
+
return_end_reason: bool = False,
|
| 210 |
+
errors: str='replace',
|
| 211 |
+
audio_info:Dict = None
|
| 212 |
+
):
|
| 213 |
+
kwargs = {"audio_info": audio_info}
|
| 214 |
+
trim_decode_tokens = tokenizer.decode(tokens, errors=errors, **kwargs)[raw_text_len:]
|
| 215 |
+
if verbose:
|
| 216 |
+
print("\nRaw Generate: ", trim_decode_tokens)
|
| 217 |
+
|
| 218 |
+
end_reason = f"Gen length {len(tokens)}"
|
| 219 |
+
for stop_word in stop_words:
|
| 220 |
+
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
| 221 |
+
for eod_word in eod_words:
|
| 222 |
+
if eod_word in trim_decode_tokens:
|
| 223 |
+
end_reason = f"Gen {eod_word!r}"
|
| 224 |
+
trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
|
| 225 |
+
trim_decode_tokens = trim_decode_tokens.strip()
|
| 226 |
+
if verbose:
|
| 227 |
+
print("\nEnd Reason:", end_reason)
|
| 228 |
+
print("\nGenerate: ", trim_decode_tokens)
|
| 229 |
+
|
| 230 |
+
if return_end_reason:
|
| 231 |
+
return trim_decode_tokens, end_reason
|
| 232 |
+
else:
|
| 233 |
+
return trim_decode_tokens
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def _decode_chatml(
|
| 237 |
+
tokens: List[int],
|
| 238 |
+
*,
|
| 239 |
+
stop_words: List[str],
|
| 240 |
+
eod_token_ids: List[int],
|
| 241 |
+
tokenizer: PreTrainedTokenizer,
|
| 242 |
+
raw_text_len: int,
|
| 243 |
+
context_length: int,
|
| 244 |
+
verbose: bool = False,
|
| 245 |
+
return_end_reason: bool = False,
|
| 246 |
+
errors: str='replace',
|
| 247 |
+
audio_info: Dict = None
|
| 248 |
+
):
|
| 249 |
+
kwargs = {"audio_info": audio_info}
|
| 250 |
+
end_reason = f"Gen length {len(tokens)}"
|
| 251 |
+
eod_token_idx = context_length
|
| 252 |
+
for eod_token_idx in range(context_length, len(tokens)):
|
| 253 |
+
if tokens[eod_token_idx] in eod_token_ids:
|
| 254 |
+
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]],**kwargs)!r}"
|
| 255 |
+
break
|
| 256 |
+
|
| 257 |
+
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors, **kwargs)[raw_text_len:]
|
| 258 |
+
if verbose:
|
| 259 |
+
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors, **kwargs)[raw_text_len:])
|
| 260 |
+
print("\nRaw Generate:", trim_decode_tokens)
|
| 261 |
+
print("\nEnd Reason:", end_reason)
|
| 262 |
+
for stop_word in stop_words:
|
| 263 |
+
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
| 264 |
+
trim_decode_tokens = trim_decode_tokens.strip()
|
| 265 |
+
if verbose:
|
| 266 |
+
print("\nGenerate:", trim_decode_tokens)
|
| 267 |
+
|
| 268 |
+
if return_end_reason:
|
| 269 |
+
return trim_decode_tokens, end_reason
|
| 270 |
+
else:
|
| 271 |
+
return trim_decode_tokens
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
def decode_tokens(
|
| 275 |
+
tokens: Union[torch.LongTensor, TokensType],
|
| 276 |
+
tokenizer: PreTrainedTokenizer,
|
| 277 |
+
raw_text_len: int,
|
| 278 |
+
context_length: int,
|
| 279 |
+
chat_format: str,
|
| 280 |
+
verbose: bool = False,
|
| 281 |
+
return_end_reason: bool = False,
|
| 282 |
+
errors: str="replace",
|
| 283 |
+
audio_info: Dict = None
|
| 284 |
+
) -> str:
|
| 285 |
+
if torch.is_tensor(tokens):
|
| 286 |
+
tokens = tokens.cpu().numpy().tolist()
|
| 287 |
+
|
| 288 |
+
if chat_format == "chatml":
|
| 289 |
+
return _decode_chatml(
|
| 290 |
+
tokens,
|
| 291 |
+
stop_words=[],
|
| 292 |
+
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
|
| 293 |
+
tokenizer=tokenizer,
|
| 294 |
+
raw_text_len=raw_text_len,
|
| 295 |
+
context_length=context_length,
|
| 296 |
+
verbose=verbose,
|
| 297 |
+
return_end_reason=return_end_reason,
|
| 298 |
+
errors=errors,
|
| 299 |
+
audio_info=audio_info
|
| 300 |
+
)
|
| 301 |
+
elif chat_format == "raw":
|
| 302 |
+
return _decode_default(
|
| 303 |
+
tokens,
|
| 304 |
+
stop_words=["<|endoftext|>"],
|
| 305 |
+
eod_words=["<|endoftext|>"],
|
| 306 |
+
tokenizer=tokenizer,
|
| 307 |
+
raw_text_len=raw_text_len,
|
| 308 |
+
verbose=verbose,
|
| 309 |
+
return_end_reason=return_end_reason,
|
| 310 |
+
errors=errors,
|
| 311 |
+
audio_info=audio_info
|
| 312 |
+
)
|
| 313 |
+
else:
|
| 314 |
+
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
class StopWordsLogitsProcessor(LogitsProcessor):
|
| 318 |
+
"""
|
| 319 |
+
:class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
|
| 320 |
+
|
| 321 |
+
Args:
|
| 322 |
+
stop_words_ids (:obj:`List[List[int]]`):
|
| 323 |
+
List of list of token ids of stop ids. In order to get the tokens of the words
|
| 324 |
+
that should not appear in the generated text, use :obj:`tokenizer(bad_word,
|
| 325 |
+
add_prefix_space=True).input_ids`.
|
| 326 |
+
eos_token_id (:obj:`int`):
|
| 327 |
+
The id of the `end-of-sequence` token.
|
| 328 |
+
"""
|
| 329 |
+
|
| 330 |
+
def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
|
| 331 |
+
|
| 332 |
+
if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
|
| 333 |
+
raise ValueError(
|
| 334 |
+
f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
|
| 335 |
+
)
|
| 336 |
+
if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
|
| 337 |
+
raise ValueError(
|
| 338 |
+
f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
|
| 339 |
+
)
|
| 340 |
+
if any(
|
| 341 |
+
any(
|
| 342 |
+
(not isinstance(token_id, (int, np.integer)) or token_id < 0)
|
| 343 |
+
for token_id in stop_word_ids
|
| 344 |
+
)
|
| 345 |
+
for stop_word_ids in stop_words_ids
|
| 346 |
+
):
|
| 347 |
+
raise ValueError(
|
| 348 |
+
f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
self.stop_words_ids = list(
|
| 352 |
+
filter(
|
| 353 |
+
lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
|
| 354 |
+
)
|
| 355 |
+
)
|
| 356 |
+
self.eos_token_id = eos_token_id
|
| 357 |
+
for stop_token_seq in self.stop_words_ids:
|
| 358 |
+
assert (
|
| 359 |
+
len(stop_token_seq) > 0
|
| 360 |
+
), "Stop words token sequences {} cannot have an empty list".format(
|
| 361 |
+
stop_words_ids
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
def __call__(
|
| 365 |
+
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
|
| 366 |
+
) -> torch.FloatTensor:
|
| 367 |
+
stopped_samples = self._calc_stopped_samples(input_ids)
|
| 368 |
+
for i, should_stop in enumerate(stopped_samples):
|
| 369 |
+
if should_stop:
|
| 370 |
+
scores[i, self.eos_token_id] = float(2**15)
|
| 371 |
+
return scores
|
| 372 |
+
|
| 373 |
+
def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
|
| 374 |
+
if len(tokens) == 0:
|
| 375 |
+
# if bad word tokens is just one token always ban it
|
| 376 |
+
return True
|
| 377 |
+
elif len(tokens) > len(prev_tokens):
|
| 378 |
+
# if bad word tokens are longer then prev input_ids they can't be equal
|
| 379 |
+
return False
|
| 380 |
+
elif prev_tokens[-len(tokens) :].tolist() == tokens:
|
| 381 |
+
# if tokens match
|
| 382 |
+
return True
|
| 383 |
+
else:
|
| 384 |
+
return False
|
| 385 |
+
|
| 386 |
+
def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
|
| 387 |
+
stopped_samples = []
|
| 388 |
+
for prev_input_ids_slice in prev_input_ids:
|
| 389 |
+
match = False
|
| 390 |
+
for stop_token_seq in self.stop_words_ids:
|
| 391 |
+
if self._tokens_match(prev_input_ids_slice, stop_token_seq):
|
| 392 |
+
# if tokens do not match continue
|
| 393 |
+
match = True
|
| 394 |
+
break
|
| 395 |
+
stopped_samples.append(match)
|
| 396 |
+
|
| 397 |
+
return stopped_samples
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
|
| 401 |
+
"""This function has been mostly taken from huggingface conversational
|
| 402 |
+
ai code at
|
| 403 |
+
https://medium.com/huggingface/how-to-build-a-state-of-the-art-
|
| 404 |
+
conversational-ai-with-transfer-learning-2d818ac26313"""
|
| 405 |
+
|
| 406 |
+
if top_k > 0:
|
| 407 |
+
# Remove all tokens with a probability less than the
|
| 408 |
+
# last token of the top-k
|
| 409 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
| 410 |
+
logits[indices_to_remove] = filter_value
|
| 411 |
+
|
| 412 |
+
if top_p > 0.0:
|
| 413 |
+
# Cconvert to 1D
|
| 414 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
| 415 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 416 |
+
|
| 417 |
+
# Remove tokens with cumulative probability above the threshold
|
| 418 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 419 |
+
# Shift the indices to the right to keep also the first token
|
| 420 |
+
# above the threshold
|
| 421 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 422 |
+
sorted_indices_to_remove[..., 0] = 0
|
| 423 |
+
for i in range(sorted_indices.size(0)):
|
| 424 |
+
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
|
| 425 |
+
logits[i][indices_to_remove] = filter_value
|
| 426 |
+
|
| 427 |
+
return logits
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
def switch(val1, val2, boolean):
|
| 431 |
+
boolean = boolean.type_as(val1)
|
| 432 |
+
return (1 - boolean) * val1 + boolean * val2
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.32.0
|
| 2 |
+
accelerate
|
| 3 |
+
tiktoken
|
| 4 |
+
einops
|
| 5 |
+
transformers_stream_generator==0.0.4
|
| 6 |
+
scipy
|
| 7 |
+
torchvision
|
| 8 |
+
pillow
|
| 9 |
+
tensorboard
|
| 10 |
+
matplotlib
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{}
|
tokenization_qwen.py
ADDED
|
@@ -0,0 +1,594 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Alibaba Cloud.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the license found in the
|
| 4 |
+
# LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
"""Tokenization classes for QWen."""
|
| 7 |
+
|
| 8 |
+
import base64
|
| 9 |
+
import logging
|
| 10 |
+
import os
|
| 11 |
+
import re
|
| 12 |
+
import itertools
|
| 13 |
+
|
| 14 |
+
import requests
|
| 15 |
+
import unicodedata
|
| 16 |
+
from typing import Collection, Dict, List, Set, Tuple, Union, Any, Callable, Optional
|
| 17 |
+
|
| 18 |
+
import tiktoken
|
| 19 |
+
import numpy as np
|
| 20 |
+
from PIL import Image
|
| 21 |
+
from PIL import ImageFont
|
| 22 |
+
from PIL import ImageDraw
|
| 23 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
| 24 |
+
from transformers.utils import try_to_load_from_cache
|
| 25 |
+
from transformers.tokenization_utils_base import BatchEncoding,PaddingStrategy,TruncationStrategy,\
|
| 26 |
+
TextInput,TextInputPair,PreTokenizedInput,PreTokenizedInputPair,TensorType, EncodedInput, EncodedInputPair
|
| 27 |
+
|
| 28 |
+
import matplotlib.colors as mcolors
|
| 29 |
+
from matplotlib.font_manager import FontProperties
|
| 30 |
+
from .audio import *
|
| 31 |
+
|
| 32 |
+
logger = logging.getLogger(__name__)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken", "ttf": "SimSun.ttf"}
|
| 36 |
+
|
| 37 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
| 38 |
+
ENDOFTEXT = "<|endoftext|>"
|
| 39 |
+
IMSTART = "<|im_start|>"
|
| 40 |
+
IMEND = "<|im_end|>"
|
| 41 |
+
# as the default behavior is changed to allow special tokens in
|
| 42 |
+
# regular texts, the surface forms of special tokens need to be
|
| 43 |
+
# as different as possible to minimize the impact
|
| 44 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
| 45 |
+
SPECIAL_TOKENS = (
|
| 46 |
+
ENDOFTEXT,
|
| 47 |
+
IMSTART,
|
| 48 |
+
IMEND,
|
| 49 |
+
) + EXTRAS
|
| 50 |
+
IMG_TOKEN_SPAN = 256
|
| 51 |
+
LANGUAGES = {
|
| 52 |
+
"en": "english",
|
| 53 |
+
"zh": "chinese",
|
| 54 |
+
"de": "german",
|
| 55 |
+
"es": "spanish",
|
| 56 |
+
"ko": "korean",
|
| 57 |
+
"fr": "french",
|
| 58 |
+
"ja": "japanese",
|
| 59 |
+
"it": "italian",
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
| 64 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
| 65 |
+
contents = f.read()
|
| 66 |
+
return {
|
| 67 |
+
base64.b64decode(token): int(rank)
|
| 68 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
def _list_find(
|
| 72 |
+
input_list: List[Any],
|
| 73 |
+
candidates: Tuple[Any],
|
| 74 |
+
start: int = 0,
|
| 75 |
+
):
|
| 76 |
+
for i in range(start, len(input_list)):
|
| 77 |
+
if input_list[i] in candidates:
|
| 78 |
+
return i
|
| 79 |
+
return -1
|
| 80 |
+
|
| 81 |
+
def _replace_closed_tag(
|
| 82 |
+
input_tokens: List[Any],
|
| 83 |
+
start_tags: Union[Any, Tuple[Any]],
|
| 84 |
+
end_tags: Union[Any, Tuple[Any]],
|
| 85 |
+
inclusive_replace_func: Callable,
|
| 86 |
+
exclusive_replace_func: Callable = lambda x: x,
|
| 87 |
+
audio_info: Dict = None
|
| 88 |
+
):
|
| 89 |
+
if isinstance(start_tags, (str, int)):
|
| 90 |
+
start_tags = (start_tags,)
|
| 91 |
+
if isinstance(end_tags, (str, int)):
|
| 92 |
+
end_tags = (end_tags,)
|
| 93 |
+
assert len(start_tags) == len(end_tags)
|
| 94 |
+
|
| 95 |
+
output_tokens = []
|
| 96 |
+
end = 0
|
| 97 |
+
audio_idx = 0
|
| 98 |
+
while True:
|
| 99 |
+
start = _list_find(input_tokens, start_tags, end)
|
| 100 |
+
if start == -1:
|
| 101 |
+
break
|
| 102 |
+
output_tokens.extend(exclusive_replace_func(input_tokens[end : start]))
|
| 103 |
+
tag_idx = start_tags.index(input_tokens[start])
|
| 104 |
+
end = _list_find(input_tokens, (end_tags[tag_idx],), start)
|
| 105 |
+
if end == -1:
|
| 106 |
+
raise ValueError("Unclosed image token")
|
| 107 |
+
output_tokens.extend(inclusive_replace_func(input_tokens[start : end + 1], audio_info, audio_idx))
|
| 108 |
+
end += 1
|
| 109 |
+
audio_idx += 1
|
| 110 |
+
output_tokens.extend(exclusive_replace_func(input_tokens[end : ]))
|
| 111 |
+
return output_tokens
|
| 112 |
+
|
| 113 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
| 114 |
+
"""QWen tokenizer."""
|
| 115 |
+
|
| 116 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 117 |
+
|
| 118 |
+
def __init__(
|
| 119 |
+
self,
|
| 120 |
+
vocab_file,
|
| 121 |
+
errors="replace",
|
| 122 |
+
audio_start_tag='<audio>',
|
| 123 |
+
audio_end_tag='</audio>',
|
| 124 |
+
**kwargs,
|
| 125 |
+
):
|
| 126 |
+
super().__init__(**kwargs)
|
| 127 |
+
self.audio_start_tag = audio_start_tag
|
| 128 |
+
self.audio_end_tag = audio_end_tag
|
| 129 |
+
self.audio_pad_tag = "[[[AUDIO:modality]]]"
|
| 130 |
+
self.IMAGE_ST = ("<ref>", "</ref>", "<box>", "</box>", "<quad>", "</quad>")
|
| 131 |
+
|
| 132 |
+
self.AUDIO_ST = (
|
| 133 |
+
'[[[AUDIO:modality]]]',
|
| 134 |
+
"<|startoftranscript|>", # 按时间线
|
| 135 |
+
"<|startofcaption|>", # 不按时间线
|
| 136 |
+
# 五大任务 [ASR,ST,AAC,keyword,AQA]
|
| 137 |
+
"<|translate|>",
|
| 138 |
+
"<|transcribe|>",
|
| 139 |
+
"<|caption|>",
|
| 140 |
+
"<|keyword|>",
|
| 141 |
+
# 语言
|
| 142 |
+
"<|unknown|>", # 未知语言
|
| 143 |
+
*[f"<|{lang}|>" for lang in LANGUAGES.keys()],
|
| 144 |
+
"<|zh_tw|>", # 繁体中文
|
| 145 |
+
# 时间戳相关
|
| 146 |
+
"<|notimestamps|>",
|
| 147 |
+
"<|sil|>",
|
| 148 |
+
"<|timestamps|>",
|
| 149 |
+
*[f"<|{i * 0.01:.2f}|>" for i in range(3001)],
|
| 150 |
+
# text风格
|
| 151 |
+
"<|caption_audiocaps|>", # for audiocaps刷分
|
| 152 |
+
"<|caption_clotho|>", # for clotho刷分
|
| 153 |
+
"<|audioset_ontology|>", # audioset体系风格
|
| 154 |
+
"<|caption_plain|>", # 其他caption数据集
|
| 155 |
+
"<|itn|>", # 加标点
|
| 156 |
+
"<|wo_itn|>", # 不加标点
|
| 157 |
+
# 特殊任务——实体识别
|
| 158 |
+
"<|startofentityvalue|>",
|
| 159 |
+
"<|endofentityvalue|>",
|
| 160 |
+
"<|startofentitytype|>",
|
| 161 |
+
"<|endofentitytype|>",
|
| 162 |
+
"<|named_entity_recognition|>",
|
| 163 |
+
# 特殊任务——audiogrounding
|
| 164 |
+
"<|grounding|>",
|
| 165 |
+
"<|startofword|>",
|
| 166 |
+
"<|endofword|>",
|
| 167 |
+
"<|delim|>", # 分隔时间戳pair对
|
| 168 |
+
# 子任务--SER
|
| 169 |
+
"<|emotion_recognition|>",
|
| 170 |
+
# 子任务--音乐描述
|
| 171 |
+
"<|music_description|>",
|
| 172 |
+
# 子任务--note analysis
|
| 173 |
+
"<|note_analysis|>",
|
| 174 |
+
"<|pitch|>",
|
| 175 |
+
*[f"<|midi_pitch_{i}|>" for i in range(128)], # midi音符
|
| 176 |
+
"<|velocity|>",
|
| 177 |
+
*[f"<|midi_velocity_{i}|>" for i in range(128)], # midi力度
|
| 178 |
+
"<|sonic|>",
|
| 179 |
+
"<|instrument|>",
|
| 180 |
+
# 子类别--说话人
|
| 181 |
+
"<|speaker_meta|>",
|
| 182 |
+
# 子类别--song
|
| 183 |
+
"<|song_meta|>",
|
| 184 |
+
# 特殊任务--AQA
|
| 185 |
+
"<|question|>",
|
| 186 |
+
"<|answer|>",
|
| 187 |
+
"<|choice|>",
|
| 188 |
+
# 子任务--场景识别
|
| 189 |
+
"<|scene|>",
|
| 190 |
+
# 子任务--event
|
| 191 |
+
"<|event|>",
|
| 192 |
+
# 子任务--vocal_classification
|
| 193 |
+
"<|vocal_classification|>",
|
| 194 |
+
# 特殊任务--SLU
|
| 195 |
+
"<|speech_understanding|>",
|
| 196 |
+
"<|scenario|>",
|
| 197 |
+
"<|action|>",
|
| 198 |
+
"<|entities|>",
|
| 199 |
+
# 子任务--语音编辑
|
| 200 |
+
"<|speech_edit|>",
|
| 201 |
+
# 子任务--命令
|
| 202 |
+
"<|speech_command|>",
|
| 203 |
+
audio_start_tag,
|
| 204 |
+
audio_end_tag
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
self.errors = errors # how to handle errors in decoding
|
| 208 |
+
|
| 209 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
|
| 210 |
+
self.special_tokens = {
|
| 211 |
+
token: index
|
| 212 |
+
for index, token in enumerate(
|
| 213 |
+
# SPECIAL_TOKENS + self.IMAGE_ST + self.AUDIO_ST, start=len(self.mergeable_ranks)
|
| 214 |
+
SPECIAL_TOKENS + self.AUDIO_ST, start=len(self.mergeable_ranks)
|
| 215 |
+
|
| 216 |
+
)
|
| 217 |
+
}
|
| 218 |
+
self.audio_start_id = self.special_tokens[self.audio_start_tag]
|
| 219 |
+
self.audio_end_id = self.special_tokens[self.audio_end_tag]
|
| 220 |
+
self.audio_pad_id = self.special_tokens[self.audio_pad_tag]
|
| 221 |
+
print(f"audio_start_id: {self.audio_start_id}, "
|
| 222 |
+
f"audio_end_id: {self.audio_end_id}, "
|
| 223 |
+
f"audio_pad_id: {self.audio_pad_id}.")
|
| 224 |
+
|
| 225 |
+
enc = tiktoken.Encoding(
|
| 226 |
+
"Qwen",
|
| 227 |
+
pat_str=PAT_STR,
|
| 228 |
+
mergeable_ranks=self.mergeable_ranks,
|
| 229 |
+
special_tokens=self.special_tokens,
|
| 230 |
+
)
|
| 231 |
+
assert (
|
| 232 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
| 233 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
| 234 |
+
|
| 235 |
+
self.decoder = {
|
| 236 |
+
v: k for k, v in self.mergeable_ranks.items()
|
| 237 |
+
} # type: dict[int, bytes|str]
|
| 238 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
| 239 |
+
|
| 240 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
| 241 |
+
|
| 242 |
+
self.eod_id = self.tokenizer.eot_token
|
| 243 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
| 244 |
+
self.im_end_id = self.special_tokens[IMEND]
|
| 245 |
+
|
| 246 |
+
def __getstate__(self):
|
| 247 |
+
# for pickle lovers
|
| 248 |
+
state = self.__dict__.copy()
|
| 249 |
+
del state['tokenizer']
|
| 250 |
+
return state
|
| 251 |
+
|
| 252 |
+
def __setstate__(self, state):
|
| 253 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
| 254 |
+
self.__dict__.update(state)
|
| 255 |
+
enc = tiktoken.Encoding(
|
| 256 |
+
"Qwen",
|
| 257 |
+
pat_str=PAT_STR,
|
| 258 |
+
mergeable_ranks=self.mergeable_ranks,
|
| 259 |
+
special_tokens=self.special_tokens,
|
| 260 |
+
)
|
| 261 |
+
self.tokenizer = enc
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
def __len__(self) -> int:
|
| 265 |
+
return self.tokenizer.n_vocab
|
| 266 |
+
|
| 267 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
| 268 |
+
return self.mergeable_ranks
|
| 269 |
+
|
| 270 |
+
def convert_tokens_to_ids(
|
| 271 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
| 272 |
+
) -> List[int]:
|
| 273 |
+
ids = []
|
| 274 |
+
if isinstance(tokens, (str, bytes)):
|
| 275 |
+
if tokens in self.special_tokens:
|
| 276 |
+
return self.special_tokens[tokens]
|
| 277 |
+
else:
|
| 278 |
+
return self.mergeable_ranks.get(tokens)
|
| 279 |
+
for token in tokens:
|
| 280 |
+
if token in self.special_tokens:
|
| 281 |
+
ids.append(self.special_tokens[token])
|
| 282 |
+
else:
|
| 283 |
+
ids.append(self.mergeable_ranks.get(token))
|
| 284 |
+
return ids
|
| 285 |
+
|
| 286 |
+
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
|
| 287 |
+
if not special_tokens and new_tokens:
|
| 288 |
+
raise ValueError('Adding regular tokens is not supported')
|
| 289 |
+
for token in new_tokens:
|
| 290 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
| 291 |
+
if surface_form not in SPECIAL_TOKENS + self.IMAGE_ST+ self.AUDIO_ST:
|
| 292 |
+
raise ValueError('Adding unknown special tokens is not supported')
|
| 293 |
+
return 0
|
| 294 |
+
|
| 295 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
| 296 |
+
"""
|
| 297 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
| 298 |
+
|
| 299 |
+
Returns:
|
| 300 |
+
`Tuple(str)`: Paths to the files saved.
|
| 301 |
+
"""
|
| 302 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
| 303 |
+
with open(file_path, "w", encoding="utf8") as w:
|
| 304 |
+
for k, v in self.mergeable_ranks.items():
|
| 305 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
| 306 |
+
w.write(line)
|
| 307 |
+
return (file_path,)
|
| 308 |
+
|
| 309 |
+
def tokenize(
|
| 310 |
+
self,
|
| 311 |
+
text: str,
|
| 312 |
+
allowed_special: Union[Set, str] = "all",
|
| 313 |
+
disallowed_special: Union[Collection, str] = (),
|
| 314 |
+
audio_info: Dict = None,
|
| 315 |
+
**kwargs,
|
| 316 |
+
) -> List[Union[bytes, str]]:
|
| 317 |
+
"""
|
| 318 |
+
Converts a string in a sequence of tokens.
|
| 319 |
+
|
| 320 |
+
Args:
|
| 321 |
+
text (`str`):
|
| 322 |
+
The sequence to be encoded.
|
| 323 |
+
allowed_special (`Literal["all"]` or `set`):
|
| 324 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
| 325 |
+
Default to "all".
|
| 326 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
| 327 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
| 328 |
+
Default to an empty tuple.
|
| 329 |
+
|
| 330 |
+
kwargs (additional keyword arguments, *optional*):
|
| 331 |
+
Will be passed to the underlying model specific encode method.
|
| 332 |
+
|
| 333 |
+
Returns:
|
| 334 |
+
`List[bytes|str]`: The list of tokens.
|
| 335 |
+
"""
|
| 336 |
+
tokens = []
|
| 337 |
+
text = unicodedata.normalize("NFC", text)
|
| 338 |
+
|
| 339 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
| 340 |
+
for t in self.tokenizer.encode(
|
| 341 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
| 342 |
+
):
|
| 343 |
+
tokens.append(self.decoder[t])
|
| 344 |
+
|
| 345 |
+
def _encode_audiourl(audio_tokens, audio_info, audio_idx):
|
| 346 |
+
assert audio_tokens[0] == self.audio_start_tag and audio_tokens[-1] == self.audio_end_tag
|
| 347 |
+
audio_token_span = audio_info['audio_span_tokens'][audio_idx]
|
| 348 |
+
out_audio_tokens = [self.audio_start_tag] + [self.audio_pad_tag]*(audio_token_span-2) + [self.audio_end_tag]
|
| 349 |
+
return out_audio_tokens
|
| 350 |
+
|
| 351 |
+
return _replace_closed_tag(tokens, self.audio_start_tag, self.audio_end_tag, _encode_audiourl, audio_info=audio_info)
|
| 352 |
+
|
| 353 |
+
def _batch_encode_plus(
|
| 354 |
+
self,
|
| 355 |
+
batch_text_or_text_pairs: Union[
|
| 356 |
+
List[TextInput],
|
| 357 |
+
List[TextInputPair],
|
| 358 |
+
List[PreTokenizedInput],
|
| 359 |
+
List[PreTokenizedInputPair],
|
| 360 |
+
List[EncodedInput],
|
| 361 |
+
List[EncodedInputPair],
|
| 362 |
+
],
|
| 363 |
+
add_special_tokens: bool = True,
|
| 364 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
| 365 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
| 366 |
+
max_length: Optional[int] = None,
|
| 367 |
+
stride: int = 0,
|
| 368 |
+
is_split_into_words: bool = False,
|
| 369 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 370 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 371 |
+
return_token_type_ids: Optional[bool] = None,
|
| 372 |
+
return_attention_mask: Optional[bool] = None,
|
| 373 |
+
return_overflowing_tokens: bool = False,
|
| 374 |
+
return_special_tokens_mask: bool = False,
|
| 375 |
+
return_offsets_mapping: bool = False,
|
| 376 |
+
return_length: bool = False,
|
| 377 |
+
verbose: bool = True,
|
| 378 |
+
**kwargs,
|
| 379 |
+
) -> BatchEncoding:
|
| 380 |
+
|
| 381 |
+
def get_input_ids(text):
|
| 382 |
+
if isinstance(text, str):
|
| 383 |
+
tokens = self.tokenize(text, **kwargs)
|
| 384 |
+
return self.convert_tokens_to_ids(tokens)
|
| 385 |
+
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
|
| 386 |
+
if is_split_into_words:
|
| 387 |
+
tokens = list(
|
| 388 |
+
itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text))
|
| 389 |
+
)
|
| 390 |
+
return self.convert_tokens_to_ids(tokens)
|
| 391 |
+
else:
|
| 392 |
+
return self.convert_tokens_to_ids(text)
|
| 393 |
+
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
|
| 394 |
+
return text
|
| 395 |
+
else:
|
| 396 |
+
raise ValueError(
|
| 397 |
+
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
if return_offsets_mapping:
|
| 401 |
+
raise NotImplementedError(
|
| 402 |
+
"return_offset_mapping is not available when using Python tokenizers. "
|
| 403 |
+
"To use this feature, change your tokenizer to one deriving from "
|
| 404 |
+
"transformers.PreTrainedTokenizerFast."
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
input_ids = []
|
| 408 |
+
audio_info = kwargs.pop("audio_info", None)
|
| 409 |
+
for pair_id in range(len(batch_text_or_text_pairs)):
|
| 410 |
+
kwargs['audio_info'] = audio_info[pair_id]
|
| 411 |
+
ids_or_pair_ids = batch_text_or_text_pairs[pair_id]
|
| 412 |
+
# for ids_or_pair_ids in batch_text_or_text_pairs:
|
| 413 |
+
if not isinstance(ids_or_pair_ids, (list, tuple)):
|
| 414 |
+
ids, pair_ids = ids_or_pair_ids, None
|
| 415 |
+
elif is_split_into_words and not isinstance(ids_or_pair_ids[0], (list, tuple)):
|
| 416 |
+
ids, pair_ids = ids_or_pair_ids, None
|
| 417 |
+
else:
|
| 418 |
+
ids, pair_ids = ids_or_pair_ids
|
| 419 |
+
|
| 420 |
+
first_ids = get_input_ids(ids)
|
| 421 |
+
second_ids = get_input_ids(pair_ids) if pair_ids is not None else None
|
| 422 |
+
input_ids.append((first_ids, second_ids))
|
| 423 |
+
|
| 424 |
+
batch_outputs = self._batch_prepare_for_model(
|
| 425 |
+
input_ids,
|
| 426 |
+
add_special_tokens=add_special_tokens,
|
| 427 |
+
padding_strategy=padding_strategy,
|
| 428 |
+
truncation_strategy=truncation_strategy,
|
| 429 |
+
max_length=max_length,
|
| 430 |
+
stride=stride,
|
| 431 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
| 432 |
+
return_attention_mask=return_attention_mask,
|
| 433 |
+
return_token_type_ids=return_token_type_ids,
|
| 434 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
| 435 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
| 436 |
+
return_length=return_length,
|
| 437 |
+
return_tensors=return_tensors,
|
| 438 |
+
verbose=verbose,
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
return BatchEncoding(batch_outputs)
|
| 442 |
+
|
| 443 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
| 444 |
+
"""
|
| 445 |
+
Converts a sequence of tokens in a single string.
|
| 446 |
+
"""
|
| 447 |
+
text = ""
|
| 448 |
+
temp = b""
|
| 449 |
+
for t in tokens:
|
| 450 |
+
if isinstance(t, str):
|
| 451 |
+
if temp:
|
| 452 |
+
text += temp.decode("utf-8", errors=self.errors)
|
| 453 |
+
temp = b""
|
| 454 |
+
text += t
|
| 455 |
+
elif isinstance(t, bytes):
|
| 456 |
+
temp += t
|
| 457 |
+
else:
|
| 458 |
+
raise TypeError("token should only be of type types or str")
|
| 459 |
+
if temp:
|
| 460 |
+
text += temp.decode("utf-8", errors=self.errors)
|
| 461 |
+
return text
|
| 462 |
+
|
| 463 |
+
@property
|
| 464 |
+
def vocab_size(self):
|
| 465 |
+
return self.tokenizer.n_vocab
|
| 466 |
+
|
| 467 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
| 468 |
+
"""Converts an id to a token, special tokens included"""
|
| 469 |
+
if index in self.decoder:
|
| 470 |
+
return self.decoder[index]
|
| 471 |
+
raise ValueError("unknown ids")
|
| 472 |
+
|
| 473 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
| 474 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
| 475 |
+
if token in self.special_tokens:
|
| 476 |
+
return self.special_tokens[token]
|
| 477 |
+
if token in self.mergeable_ranks:
|
| 478 |
+
return self.mergeable_ranks[token]
|
| 479 |
+
raise ValueError("unknown token")
|
| 480 |
+
|
| 481 |
+
def _tokenize(self, text: str, **kwargs):
|
| 482 |
+
"""
|
| 483 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
| 484 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
| 485 |
+
|
| 486 |
+
Do NOT take care of added tokens.
|
| 487 |
+
"""
|
| 488 |
+
raise NotImplementedError
|
| 489 |
+
|
| 490 |
+
def _decode(
|
| 491 |
+
self,
|
| 492 |
+
token_ids: Union[int, List[int]],
|
| 493 |
+
skip_special_tokens: bool = False,
|
| 494 |
+
errors: str = None,
|
| 495 |
+
**kwargs,
|
| 496 |
+
) -> str:
|
| 497 |
+
if isinstance(token_ids, int):
|
| 498 |
+
token_ids = [token_ids]
|
| 499 |
+
audio_info = kwargs.pop("audio_info", None)
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
def _decode_audiourl(audio_token_ids, audio_info, audio_idx):
|
| 503 |
+
assert audio_token_ids[0] == self.audio_start_id and audio_token_ids[-1] == self.audio_end_id
|
| 504 |
+
audio_url = audio_info["audio_urls"][audio_idx]
|
| 505 |
+
return [self.audio_start_id] + self.tokenizer.encode(audio_url) + [self.audio_end_id]
|
| 506 |
+
|
| 507 |
+
token_ids = _replace_closed_tag(token_ids, self.audio_start_id, self.audio_end_id, _decode_audiourl, audio_info=audio_info)
|
| 508 |
+
|
| 509 |
+
if skip_special_tokens:
|
| 510 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
| 511 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
| 512 |
+
|
| 513 |
+
def to_list_format(self, text: str):
|
| 514 |
+
text = unicodedata.normalize("NFC", text)
|
| 515 |
+
token_ids = self.tokenizer.encode(
|
| 516 |
+
text, allowed_special=set(self.IMAGE_ST + self.AUDIO_ST + (ENDOFTEXT,)))
|
| 517 |
+
|
| 518 |
+
def _encode_audio_info(tokens):
|
| 519 |
+
if len(tokens) == 0:
|
| 520 |
+
return []
|
| 521 |
+
if tokens[0] == self.audio_start_id and tokens[-1] == self.audio_end_id:
|
| 522 |
+
key = 'audio'
|
| 523 |
+
else:
|
| 524 |
+
_tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
|
| 525 |
+
return [{'text': b''.join(map(_tobytes, map(self.decoder.get, tokens))).decode('utf-8')}]
|
| 526 |
+
_tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
|
| 527 |
+
val = b''.join(map(_tobytes, map(self.decoder.get, tokens[1:-1]))).decode('utf-8')
|
| 528 |
+
return [{key: val}]
|
| 529 |
+
|
| 530 |
+
return _replace_closed_tag(
|
| 531 |
+
token_ids,
|
| 532 |
+
(self.audio_start_id),
|
| 533 |
+
(self.audio_end_id),
|
| 534 |
+
_encode_audio_info,
|
| 535 |
+
_encode_audio_info,
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
def from_list_format(self, list_format: List[Dict]):
|
| 539 |
+
text = ''
|
| 540 |
+
num_audios = 0
|
| 541 |
+
for ele in list_format:
|
| 542 |
+
if 'audio' in ele:
|
| 543 |
+
num_audios += 1
|
| 544 |
+
text += f'Audio {num_audios}:'
|
| 545 |
+
text += self.audio_start_tag + ele['audio'] + self.audio_end_tag
|
| 546 |
+
text += '\n'
|
| 547 |
+
elif 'text' in ele:
|
| 548 |
+
text += ele['text']
|
| 549 |
+
elif 'box' in ele:
|
| 550 |
+
if 'ref' in ele:
|
| 551 |
+
text += self.ref_start_tag + ele['ref'] + self.ref_end_tag
|
| 552 |
+
for box in ele['box']:
|
| 553 |
+
text += self.box_start_tag + '(%d,%d),(%d,%d)' % (box[0], box[1], box[2], box[3]) + self.box_end_tag
|
| 554 |
+
else:
|
| 555 |
+
raise ValueError("Unsupport element: " + str(ele))
|
| 556 |
+
return text
|
| 557 |
+
|
| 558 |
+
def extract_audio_urls(self, text):
|
| 559 |
+
pattern = rf"{self.audio_start_tag}(.*?){self.audio_end_tag}"
|
| 560 |
+
return re.findall(pattern, text)
|
| 561 |
+
|
| 562 |
+
def process_audio(self, text):
|
| 563 |
+
audio_urls = self.extract_audio_urls(text)
|
| 564 |
+
if len(audio_urls)> 0:
|
| 565 |
+
audios, audio_lens, audio_span_tokens = [], [], []
|
| 566 |
+
for audio_path in audio_urls:
|
| 567 |
+
if audio_path.startswith("http://") or audio_path.startswith("https://"): # http
|
| 568 |
+
data = bytes(requests.get(audio_path, stream=True).content)
|
| 569 |
+
audio = load_bytesio_audio(data)
|
| 570 |
+
else:
|
| 571 |
+
audio = load_audio(audio_path)
|
| 572 |
+
L = (audio.shape[0] if audio.shape[0] <= 480000 else 480000) # max_length < 30s
|
| 573 |
+
mel_len = L // 160
|
| 574 |
+
audio = pad_or_trim(audio.flatten())
|
| 575 |
+
mel = log_mel_spectrogram(audio)
|
| 576 |
+
audio_len_after_cnn = get_T_after_cnn(mel_len)
|
| 577 |
+
audio_token_num = (audio_len_after_cnn - 2) // 2 + 1
|
| 578 |
+
audio_len = [audio_len_after_cnn, audio_token_num]
|
| 579 |
+
audios.append(mel)
|
| 580 |
+
audio_lens.append(audio_len)
|
| 581 |
+
audio_span_tokens.append(audio_token_num+2) # add audio bos eos
|
| 582 |
+
input_audio_lengths = torch.IntTensor(audio_lens)
|
| 583 |
+
input_audios = torch.stack(audios, dim=0)
|
| 584 |
+
return {"input_audios": input_audios,
|
| 585 |
+
"input_audio_lengths": input_audio_lengths,
|
| 586 |
+
"audio_span_tokens": audio_span_tokens,
|
| 587 |
+
"audio_urls": audio_urls}
|
| 588 |
+
else:
|
| 589 |
+
return None
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
|
| 594 |
+
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoTokenizer": [
|
| 4 |
+
"tokenization_qwen.QWenTokenizer",
|
| 5 |
+
null
|
| 6 |
+
]
|
| 7 |
+
},
|
| 8 |
+
"clean_up_tokenization_spaces": true,
|
| 9 |
+
"model_max_length": 8192,
|
| 10 |
+
"tokenizer_class": "QWenTokenizer"
|
| 11 |
+
}
|