Create qwen2to3_diagnostic.py
Browse files- qwen2to3_diagnostic.py +222 -0
qwen2to3_diagnostic.py
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# file: qwen2to3_diagnostic.py
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
import json
|
| 6 |
+
import re
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
|
| 10 |
+
from transformers import Qwen3Config, Qwen3ForCausalLM
|
| 11 |
+
from collections import Counter
|
| 12 |
+
|
| 13 |
+
# --- DIAGNOSTIC HELPERS ---
|
| 14 |
+
|
| 15 |
+
def log_tensor_stats(tensor, name):
|
| 16 |
+
"""Prints statistics for a given tensor."""
|
| 17 |
+
if tensor.numel() == 0:
|
| 18 |
+
print(f" - DIAGNOSTIC STATS for '{name}': Tensor is empty.")
|
| 19 |
+
return
|
| 20 |
+
print(
|
| 21 |
+
f" - DIAGNOSTIC STATS for '{name}':\n"
|
| 22 |
+
f" - Shape: {tensor.shape}, Dtype: {tensor.dtype}\n"
|
| 23 |
+
f" - Mean: {tensor.float().mean().item():.4f}, Std: {tensor.float().std().item():.4f}\n"
|
| 24 |
+
f" - Min: {tensor.float().min().item():.4f}, Max: {tensor.float().max().item():.4f}\n"
|
| 25 |
+
f" - Has NaN: {torch.isnan(tensor).any().item()}, Has Inf: {torch.isinf(tensor).any().item()}"
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
def verify_embedding_transfer(s_embeds, t_embeds, mapping, t_tokenizer, num_samples=5):
|
| 29 |
+
"""Verifies that some shared token embeddings were copied correctly."""
|
| 30 |
+
print("\n - DIAGNOSTIC: Verifying embedding transfer for sample tokens...")
|
| 31 |
+
verified_count = 0
|
| 32 |
+
for t_id, s_id in mapping.items():
|
| 33 |
+
if verified_count >= num_samples:
|
| 34 |
+
break
|
| 35 |
+
if s_id != -1:
|
| 36 |
+
token = t_tokenizer.convert_ids_to_tokens(t_id)
|
| 37 |
+
source_vec = s_embeds[s_id]
|
| 38 |
+
target_vec = t_embeds[t_id]
|
| 39 |
+
diff = torch.sum(torch.abs(source_vec - target_vec)).item()
|
| 40 |
+
if diff < 1e-6:
|
| 41 |
+
print(f" - ✓ Token '{token}' (ID {t_id}) transferred successfully (diff: {diff:.2e}).")
|
| 42 |
+
else:
|
| 43 |
+
print(f" - ✗ FAILED: Token '{token}' (ID {t_id}) has a large difference after transfer (diff: {diff:.2e}).")
|
| 44 |
+
verified_count += 1
|
| 45 |
+
|
| 46 |
+
def verify_grafted_layer(target_state_dict, donor_state_dict, target_layer_idx, donor_layer_idx):
|
| 47 |
+
"""Verifies that cyclical grafting for q_norm/k_norm worked."""
|
| 48 |
+
print(f"\n - DIAGNOSTIC: Verifying cyclical graft for target layer {target_layer_idx} from donor layer {donor_layer_idx}...")
|
| 49 |
+
for norm_type in ['q_norm', 'k_norm']:
|
| 50 |
+
target_key = f'model.layers.{target_layer_idx}.self_attn.{norm_type}.weight'
|
| 51 |
+
donor_key = f'model.layers.{donor_layer_idx}.self_attn.{norm_type}.weight'
|
| 52 |
+
diff = torch.sum(torch.abs(target_state_dict[target_key] - donor_state_dict[donor_key])).item()
|
| 53 |
+
if diff < 1e-6:
|
| 54 |
+
print(f" - ✓ {norm_type} weights match (diff: {diff:.2e}).")
|
| 55 |
+
else:
|
| 56 |
+
print(f" - ✗ FAILED: {norm_type} weights DO NOT match (diff: {diff:.2e}).")
|
| 57 |
+
|
| 58 |
+
def check_for_nan_inf(state_dict):
|
| 59 |
+
"""Scans the entire state_dict for NaN or Inf values."""
|
| 60 |
+
print("\n - DIAGNOSTIC: Scanning final state dictionary for NaN/Inf values...")
|
| 61 |
+
found_issue = False
|
| 62 |
+
for key, tensor in tqdm(state_dict.items(), desc="Scanning tensors"):
|
| 63 |
+
if torch.isnan(tensor).any() or torch.isinf(tensor).any():
|
| 64 |
+
print(f" - ✗ FAILED: Found NaN or Inf in tensor '{key}'!")
|
| 65 |
+
found_issue = True
|
| 66 |
+
if not found_issue:
|
| 67 |
+
print(" - ✓ All tensors in the final state dictionary are clean.")
|
| 68 |
+
return not found_issue
|
| 69 |
+
|
| 70 |
+
# --- STANDARD HELPERS ---
|
| 71 |
+
|
| 72 |
+
def create_vocab_mapping(s_tok, t_tok):
|
| 73 |
+
# ... (code is unchanged)
|
| 74 |
+
s_vocab, t_vocab = s_tok.get_vocab(), t_tok.get_vocab()
|
| 75 |
+
s_tok_to_id = {t: i for t, i in s_vocab.items()}
|
| 76 |
+
mapping = {t_id: s_tok_to_id.get(t, -1) for t, t_id in t_vocab.items()}
|
| 77 |
+
matches = sum(1 for v in mapping.values() if v != -1)
|
| 78 |
+
print(f"Vocabulary overlap: {matches}/{len(t_vocab)} tokens ({matches/len(t_vocab)*100:.1f}%) will be transferred.")
|
| 79 |
+
return mapping
|
| 80 |
+
|
| 81 |
+
def verify_special_tokens(s_tok, t_tok, mapping):
|
| 82 |
+
# ... (code is unchanged)
|
| 83 |
+
print("\nVerifying special token mappings...")
|
| 84 |
+
for name, token_value in t_tok.special_tokens_map.items():
|
| 85 |
+
def _process_token(token_str):
|
| 86 |
+
if token_str and token_str in t_tok.get_vocab():
|
| 87 |
+
t_id = t_tok.convert_tokens_to_ids(token_str)
|
| 88 |
+
s_id = mapping.get(t_id, -1)
|
| 89 |
+
status = f"Mapped (T: {t_id} -> S: {s_id})" if s_id != -1 else "NOT FOUND in source (initialized with mean)"
|
| 90 |
+
print(f" ✓ ('{token_str}'): {status}")
|
| 91 |
+
if isinstance(token_value, str): _process_token(token_value)
|
| 92 |
+
elif isinstance(token_value, list):
|
| 93 |
+
for token_str_in_list in token_value: _process_token(token_str_in_list)
|
| 94 |
+
|
| 95 |
+
def create_hybrid_matrix(s_matrix, mapping, shape):
|
| 96 |
+
# ... (code is unchanged, but we'll add logging inside the main function)
|
| 97 |
+
mean_embedding = s_matrix.mean(dim=0, keepdim=True)
|
| 98 |
+
hybrid = torch.zeros(shape, dtype=s_matrix.dtype, device='cpu')
|
| 99 |
+
for t_id, s_id in mapping.items():
|
| 100 |
+
hybrid[t_id] = s_matrix[s_id] if s_id != -1 else mean_embedding
|
| 101 |
+
return hybrid.to(s_matrix.device)
|
| 102 |
+
|
| 103 |
+
def validate_model_diagnostic(path):
|
| 104 |
+
print("\n[Step 6/6] Running DIAGNOSTIC validation...")
|
| 105 |
+
try:
|
| 106 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
| 107 |
+
model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", torch_dtype=torch.bfloat16)
|
| 108 |
+
model.eval()
|
| 109 |
+
prompt = "The theory of relativity states that"
|
| 110 |
+
print(f"\nValidation Prompt: '{prompt}'")
|
| 111 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 112 |
+
with torch.no_grad():
|
| 113 |
+
outputs = model.generate(**inputs, max_new_tokens=25, do_sample=False, pad_token_id=tokenizer.eos_token_id)
|
| 114 |
+
|
| 115 |
+
print("\n--- DIAGNOSTIC: RAW TOKEN IDs ---")
|
| 116 |
+
print(outputs[0].tolist())
|
| 117 |
+
|
| 118 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 119 |
+
print("\n--- DIAGNOSTIC: Decoded Response ---")
|
| 120 |
+
print(f"'{response}'")
|
| 121 |
+
|
| 122 |
+
if '�' in response:
|
| 123 |
+
print("\n - ✗ VALIDATION FAILED: Found replacement character '�' in output. This indicates a tokenization/decoding issue.")
|
| 124 |
+
return
|
| 125 |
+
|
| 126 |
+
# A more robust check for coherence
|
| 127 |
+
if "states that states that" in response or "the the the" in response or len(set(response.split())) < 5:
|
| 128 |
+
print("\n - ✗ VALIDATION FAILED: Output appears repetitive or incoherent.")
|
| 129 |
+
else:
|
| 130 |
+
print("\n - ✓ Validation check passed: Model generated non-repetitive text.")
|
| 131 |
+
|
| 132 |
+
except Exception as e:
|
| 133 |
+
print(f"\n ✗ Validation FAILED with an exception: {e}")
|
| 134 |
+
|
| 135 |
+
# --- Main Conversion Logic ---
|
| 136 |
+
def convert_qwen2_to_qwen3_diagnostic():
|
| 137 |
+
source_model_id, donor_model_id = "Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen3-32B"
|
| 138 |
+
target_model_path = "./Qwen3-72B"
|
| 139 |
+
print("Starting DIAGNOSTIC conversion process (v6.0)...")
|
| 140 |
+
|
| 141 |
+
# --- Step 1 & 2: Load everything ---
|
| 142 |
+
s_config = AutoConfig.from_pretrained(source_model_id)
|
| 143 |
+
d_config = AutoConfig.from_pretrained(donor_model_id)
|
| 144 |
+
dtype = torch.bfloat16
|
| 145 |
+
s_model = AutoModelForCausalLM.from_pretrained(source_model_id, torch_dtype=dtype, device_map="auto")
|
| 146 |
+
d_model = AutoModelForCausalLM.from_pretrained(donor_model_id, torch_dtype=dtype, device_map="auto")
|
| 147 |
+
s_tokenizer = AutoTokenizer.from_pretrained(source_model_id)
|
| 148 |
+
t_tokenizer = AutoTokenizer.from_pretrained(donor_model_id)
|
| 149 |
+
|
| 150 |
+
# --- Step 3: Create Target ---
|
| 151 |
+
t_config = Qwen3Config(hidden_size=s_config.hidden_size, intermediate_size=s_config.intermediate_size, num_hidden_layers=s_config.num_hidden_layers, num_attention_heads=s_config.num_attention_heads, num_key_value_heads=s_config.num_key_value_heads, max_position_embeddings=s_config.max_position_embeddings, max_window_layers=s_config.max_window_layers, sliding_window=s_config.sliding_window, attention_bias=d_config.attention_bias, hidden_act=d_config.hidden_act, initializer_range=d_config.initializer_range, rms_norm_eps=d_config.rms_norm_eps, rope_theta=d_config.rope_theta, vocab_size=d_config.vocab_size, tie_word_embeddings=True)
|
| 152 |
+
with torch.device("meta"): t_model = Qwen3ForCausalLM(t_config)
|
| 153 |
+
|
| 154 |
+
# --- Step 4: Convert and DIAGNOSE Weights ---
|
| 155 |
+
print("\n[Step 4/6] Converting weights (DIAGNOSTIC mode)...")
|
| 156 |
+
s_state_dict = {k: v.cpu() for k, v in tqdm(s_model.state_dict().items(), desc="Source state dict to CPU")}
|
| 157 |
+
d_state_dict = {k: v.cpu() for k, v in tqdm(d_model.state_dict().items(), desc="Donor state dict to CPU")}
|
| 158 |
+
vocab_mapping = create_vocab_mapping(s_tokenizer, t_tokenizer)
|
| 159 |
+
verify_special_tokens(s_tokenizer, t_tokenizer, vocab_mapping)
|
| 160 |
+
|
| 161 |
+
new_state_dict = {}
|
| 162 |
+
num_donor_layers = d_config.num_hidden_layers
|
| 163 |
+
|
| 164 |
+
# --- Create and Diagnose Hybrid Embeddings ---
|
| 165 |
+
print("\n--- Creating and Diagnosing Embedding and LM Head ---")
|
| 166 |
+
|
| 167 |
+
# Embeddings
|
| 168 |
+
print("Processing model.embed_tokens.weight...")
|
| 169 |
+
s_embeds = s_state_dict['model.embed_tokens.weight']
|
| 170 |
+
mean_embedding = s_embeds.mean(dim=0, keepdim=True)
|
| 171 |
+
log_tensor_stats(mean_embedding, "Mean Initializer Vector")
|
| 172 |
+
new_embed_matrix = create_hybrid_matrix(s_embeds, vocab_mapping, (t_config.vocab_size, t_config.hidden_size))
|
| 173 |
+
log_tensor_stats(new_embed_matrix, "Final Hybrid Embedding Matrix")
|
| 174 |
+
new_state_dict['model.embed_tokens.weight'] = new_embed_matrix
|
| 175 |
+
verify_embedding_transfer(s_embeds, new_embed_matrix, vocab_mapping, t_tokenizer)
|
| 176 |
+
|
| 177 |
+
# LM Head
|
| 178 |
+
print("\nProcessing lm_head.weight...")
|
| 179 |
+
s_lm_head = s_state_dict['lm_head.weight']
|
| 180 |
+
new_lm_head_matrix = create_hybrid_matrix(s_lm_head, vocab_mapping, (t_config.vocab_size, t_config.hidden_size))
|
| 181 |
+
log_tensor_stats(new_lm_head_matrix, "Final Hybrid LM Head Matrix")
|
| 182 |
+
new_state_dict['lm_head.weight'] = new_lm_head_matrix
|
| 183 |
+
|
| 184 |
+
# --- Process remaining layers ---
|
| 185 |
+
print("\n--- Processing Transformer Layers ---")
|
| 186 |
+
# Get all keys except the ones we already handled
|
| 187 |
+
remaining_keys = [k for k in t_model.state_dict().keys() if 'embed_tokens' not in k and 'lm_head' not in k]
|
| 188 |
+
|
| 189 |
+
for key in tqdm(remaining_keys, desc="Transferring layer weights"):
|
| 190 |
+
if "q_norm" in key or "k_norm" in key:
|
| 191 |
+
match = re.search(r'layers\.(\d+)\.', key)
|
| 192 |
+
if match:
|
| 193 |
+
target_layer_idx = int(match.group(1))
|
| 194 |
+
donor_layer_idx = target_layer_idx % num_donor_layers
|
| 195 |
+
donor_key = key.replace(f'layers.{target_layer_idx}.', f'layers.{donor_layer_idx}.')
|
| 196 |
+
new_state_dict[key] = d_state_dict[donor_key].clone()
|
| 197 |
+
elif key in s_state_dict:
|
| 198 |
+
new_state_dict[key] = s_state_dict[key].clone()
|
| 199 |
+
else:
|
| 200 |
+
print(f" ⚠️ Unhandled key: {key} (not in source, skipping)")
|
| 201 |
+
|
| 202 |
+
# --- Final Diagnostic Checks ---
|
| 203 |
+
verify_grafted_layer(new_state_dict, d_state_dict, target_layer_idx=num_donor_layers, donor_layer_idx=0)
|
| 204 |
+
all_clean = check_for_nan_inf(new_state_dict)
|
| 205 |
+
if not all_clean:
|
| 206 |
+
print("\nCRITICAL ERROR: NaN/Inf values detected. Aborting before save.")
|
| 207 |
+
return # Stop the process
|
| 208 |
+
|
| 209 |
+
# --- Step 5: Save ---
|
| 210 |
+
print("\n[Step 5/6] Saving final model and supporting files...")
|
| 211 |
+
t_model.load_state_dict(new_state_dict) # Load into meta-model
|
| 212 |
+
t_model.save_pretrained(target_model_path, safe_serialization=True, state_dict=new_state_dict)
|
| 213 |
+
t_tokenizer.save_pretrained(target_model_path)
|
| 214 |
+
print(f"✅ Model saved to: {target_model_path}")
|
| 215 |
+
|
| 216 |
+
# --- Step 6: Validate ---
|
| 217 |
+
del s_model, d_model, s_state_dict, d_state_dict, new_state_dict, t_model
|
| 218 |
+
torch.cuda.empty_cache()
|
| 219 |
+
validate_model_diagnostic(path=target_model_path)
|
| 220 |
+
|
| 221 |
+
if __name__ == "__main__":
|
| 222 |
+
convert_qwen2_to_qwen3_diagnostic()
|