Create qwen2to3_diagnostic.py
Browse files- qwen2to3_diagnostic.py +222 -0
qwen2to3_diagnostic.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# file: qwen2to3_diagnostic.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
import re
|
7 |
+
from datetime import datetime
|
8 |
+
from tqdm import tqdm
|
9 |
+
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
|
10 |
+
from transformers import Qwen3Config, Qwen3ForCausalLM
|
11 |
+
from collections import Counter
|
12 |
+
|
13 |
+
# --- DIAGNOSTIC HELPERS ---
|
14 |
+
|
15 |
+
def log_tensor_stats(tensor, name):
|
16 |
+
"""Prints statistics for a given tensor."""
|
17 |
+
if tensor.numel() == 0:
|
18 |
+
print(f" - DIAGNOSTIC STATS for '{name}': Tensor is empty.")
|
19 |
+
return
|
20 |
+
print(
|
21 |
+
f" - DIAGNOSTIC STATS for '{name}':\n"
|
22 |
+
f" - Shape: {tensor.shape}, Dtype: {tensor.dtype}\n"
|
23 |
+
f" - Mean: {tensor.float().mean().item():.4f}, Std: {tensor.float().std().item():.4f}\n"
|
24 |
+
f" - Min: {tensor.float().min().item():.4f}, Max: {tensor.float().max().item():.4f}\n"
|
25 |
+
f" - Has NaN: {torch.isnan(tensor).any().item()}, Has Inf: {torch.isinf(tensor).any().item()}"
|
26 |
+
)
|
27 |
+
|
28 |
+
def verify_embedding_transfer(s_embeds, t_embeds, mapping, t_tokenizer, num_samples=5):
|
29 |
+
"""Verifies that some shared token embeddings were copied correctly."""
|
30 |
+
print("\n - DIAGNOSTIC: Verifying embedding transfer for sample tokens...")
|
31 |
+
verified_count = 0
|
32 |
+
for t_id, s_id in mapping.items():
|
33 |
+
if verified_count >= num_samples:
|
34 |
+
break
|
35 |
+
if s_id != -1:
|
36 |
+
token = t_tokenizer.convert_ids_to_tokens(t_id)
|
37 |
+
source_vec = s_embeds[s_id]
|
38 |
+
target_vec = t_embeds[t_id]
|
39 |
+
diff = torch.sum(torch.abs(source_vec - target_vec)).item()
|
40 |
+
if diff < 1e-6:
|
41 |
+
print(f" - ✓ Token '{token}' (ID {t_id}) transferred successfully (diff: {diff:.2e}).")
|
42 |
+
else:
|
43 |
+
print(f" - ✗ FAILED: Token '{token}' (ID {t_id}) has a large difference after transfer (diff: {diff:.2e}).")
|
44 |
+
verified_count += 1
|
45 |
+
|
46 |
+
def verify_grafted_layer(target_state_dict, donor_state_dict, target_layer_idx, donor_layer_idx):
|
47 |
+
"""Verifies that cyclical grafting for q_norm/k_norm worked."""
|
48 |
+
print(f"\n - DIAGNOSTIC: Verifying cyclical graft for target layer {target_layer_idx} from donor layer {donor_layer_idx}...")
|
49 |
+
for norm_type in ['q_norm', 'k_norm']:
|
50 |
+
target_key = f'model.layers.{target_layer_idx}.self_attn.{norm_type}.weight'
|
51 |
+
donor_key = f'model.layers.{donor_layer_idx}.self_attn.{norm_type}.weight'
|
52 |
+
diff = torch.sum(torch.abs(target_state_dict[target_key] - donor_state_dict[donor_key])).item()
|
53 |
+
if diff < 1e-6:
|
54 |
+
print(f" - ✓ {norm_type} weights match (diff: {diff:.2e}).")
|
55 |
+
else:
|
56 |
+
print(f" - ✗ FAILED: {norm_type} weights DO NOT match (diff: {diff:.2e}).")
|
57 |
+
|
58 |
+
def check_for_nan_inf(state_dict):
|
59 |
+
"""Scans the entire state_dict for NaN or Inf values."""
|
60 |
+
print("\n - DIAGNOSTIC: Scanning final state dictionary for NaN/Inf values...")
|
61 |
+
found_issue = False
|
62 |
+
for key, tensor in tqdm(state_dict.items(), desc="Scanning tensors"):
|
63 |
+
if torch.isnan(tensor).any() or torch.isinf(tensor).any():
|
64 |
+
print(f" - ✗ FAILED: Found NaN or Inf in tensor '{key}'!")
|
65 |
+
found_issue = True
|
66 |
+
if not found_issue:
|
67 |
+
print(" - ✓ All tensors in the final state dictionary are clean.")
|
68 |
+
return not found_issue
|
69 |
+
|
70 |
+
# --- STANDARD HELPERS ---
|
71 |
+
|
72 |
+
def create_vocab_mapping(s_tok, t_tok):
|
73 |
+
# ... (code is unchanged)
|
74 |
+
s_vocab, t_vocab = s_tok.get_vocab(), t_tok.get_vocab()
|
75 |
+
s_tok_to_id = {t: i for t, i in s_vocab.items()}
|
76 |
+
mapping = {t_id: s_tok_to_id.get(t, -1) for t, t_id in t_vocab.items()}
|
77 |
+
matches = sum(1 for v in mapping.values() if v != -1)
|
78 |
+
print(f"Vocabulary overlap: {matches}/{len(t_vocab)} tokens ({matches/len(t_vocab)*100:.1f}%) will be transferred.")
|
79 |
+
return mapping
|
80 |
+
|
81 |
+
def verify_special_tokens(s_tok, t_tok, mapping):
|
82 |
+
# ... (code is unchanged)
|
83 |
+
print("\nVerifying special token mappings...")
|
84 |
+
for name, token_value in t_tok.special_tokens_map.items():
|
85 |
+
def _process_token(token_str):
|
86 |
+
if token_str and token_str in t_tok.get_vocab():
|
87 |
+
t_id = t_tok.convert_tokens_to_ids(token_str)
|
88 |
+
s_id = mapping.get(t_id, -1)
|
89 |
+
status = f"Mapped (T: {t_id} -> S: {s_id})" if s_id != -1 else "NOT FOUND in source (initialized with mean)"
|
90 |
+
print(f" ✓ ('{token_str}'): {status}")
|
91 |
+
if isinstance(token_value, str): _process_token(token_value)
|
92 |
+
elif isinstance(token_value, list):
|
93 |
+
for token_str_in_list in token_value: _process_token(token_str_in_list)
|
94 |
+
|
95 |
+
def create_hybrid_matrix(s_matrix, mapping, shape):
|
96 |
+
# ... (code is unchanged, but we'll add logging inside the main function)
|
97 |
+
mean_embedding = s_matrix.mean(dim=0, keepdim=True)
|
98 |
+
hybrid = torch.zeros(shape, dtype=s_matrix.dtype, device='cpu')
|
99 |
+
for t_id, s_id in mapping.items():
|
100 |
+
hybrid[t_id] = s_matrix[s_id] if s_id != -1 else mean_embedding
|
101 |
+
return hybrid.to(s_matrix.device)
|
102 |
+
|
103 |
+
def validate_model_diagnostic(path):
|
104 |
+
print("\n[Step 6/6] Running DIAGNOSTIC validation...")
|
105 |
+
try:
|
106 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
107 |
+
model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", torch_dtype=torch.bfloat16)
|
108 |
+
model.eval()
|
109 |
+
prompt = "The theory of relativity states that"
|
110 |
+
print(f"\nValidation Prompt: '{prompt}'")
|
111 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
112 |
+
with torch.no_grad():
|
113 |
+
outputs = model.generate(**inputs, max_new_tokens=25, do_sample=False, pad_token_id=tokenizer.eos_token_id)
|
114 |
+
|
115 |
+
print("\n--- DIAGNOSTIC: RAW TOKEN IDs ---")
|
116 |
+
print(outputs[0].tolist())
|
117 |
+
|
118 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
119 |
+
print("\n--- DIAGNOSTIC: Decoded Response ---")
|
120 |
+
print(f"'{response}'")
|
121 |
+
|
122 |
+
if '�' in response:
|
123 |
+
print("\n - ✗ VALIDATION FAILED: Found replacement character '�' in output. This indicates a tokenization/decoding issue.")
|
124 |
+
return
|
125 |
+
|
126 |
+
# A more robust check for coherence
|
127 |
+
if "states that states that" in response or "the the the" in response or len(set(response.split())) < 5:
|
128 |
+
print("\n - ✗ VALIDATION FAILED: Output appears repetitive or incoherent.")
|
129 |
+
else:
|
130 |
+
print("\n - ✓ Validation check passed: Model generated non-repetitive text.")
|
131 |
+
|
132 |
+
except Exception as e:
|
133 |
+
print(f"\n ✗ Validation FAILED with an exception: {e}")
|
134 |
+
|
135 |
+
# --- Main Conversion Logic ---
|
136 |
+
def convert_qwen2_to_qwen3_diagnostic():
|
137 |
+
source_model_id, donor_model_id = "Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen3-32B"
|
138 |
+
target_model_path = "./Qwen3-72B"
|
139 |
+
print("Starting DIAGNOSTIC conversion process (v6.0)...")
|
140 |
+
|
141 |
+
# --- Step 1 & 2: Load everything ---
|
142 |
+
s_config = AutoConfig.from_pretrained(source_model_id)
|
143 |
+
d_config = AutoConfig.from_pretrained(donor_model_id)
|
144 |
+
dtype = torch.bfloat16
|
145 |
+
s_model = AutoModelForCausalLM.from_pretrained(source_model_id, torch_dtype=dtype, device_map="auto")
|
146 |
+
d_model = AutoModelForCausalLM.from_pretrained(donor_model_id, torch_dtype=dtype, device_map="auto")
|
147 |
+
s_tokenizer = AutoTokenizer.from_pretrained(source_model_id)
|
148 |
+
t_tokenizer = AutoTokenizer.from_pretrained(donor_model_id)
|
149 |
+
|
150 |
+
# --- Step 3: Create Target ---
|
151 |
+
t_config = Qwen3Config(hidden_size=s_config.hidden_size, intermediate_size=s_config.intermediate_size, num_hidden_layers=s_config.num_hidden_layers, num_attention_heads=s_config.num_attention_heads, num_key_value_heads=s_config.num_key_value_heads, max_position_embeddings=s_config.max_position_embeddings, max_window_layers=s_config.max_window_layers, sliding_window=s_config.sliding_window, attention_bias=d_config.attention_bias, hidden_act=d_config.hidden_act, initializer_range=d_config.initializer_range, rms_norm_eps=d_config.rms_norm_eps, rope_theta=d_config.rope_theta, vocab_size=d_config.vocab_size, tie_word_embeddings=True)
|
152 |
+
with torch.device("meta"): t_model = Qwen3ForCausalLM(t_config)
|
153 |
+
|
154 |
+
# --- Step 4: Convert and DIAGNOSE Weights ---
|
155 |
+
print("\n[Step 4/6] Converting weights (DIAGNOSTIC mode)...")
|
156 |
+
s_state_dict = {k: v.cpu() for k, v in tqdm(s_model.state_dict().items(), desc="Source state dict to CPU")}
|
157 |
+
d_state_dict = {k: v.cpu() for k, v in tqdm(d_model.state_dict().items(), desc="Donor state dict to CPU")}
|
158 |
+
vocab_mapping = create_vocab_mapping(s_tokenizer, t_tokenizer)
|
159 |
+
verify_special_tokens(s_tokenizer, t_tokenizer, vocab_mapping)
|
160 |
+
|
161 |
+
new_state_dict = {}
|
162 |
+
num_donor_layers = d_config.num_hidden_layers
|
163 |
+
|
164 |
+
# --- Create and Diagnose Hybrid Embeddings ---
|
165 |
+
print("\n--- Creating and Diagnosing Embedding and LM Head ---")
|
166 |
+
|
167 |
+
# Embeddings
|
168 |
+
print("Processing model.embed_tokens.weight...")
|
169 |
+
s_embeds = s_state_dict['model.embed_tokens.weight']
|
170 |
+
mean_embedding = s_embeds.mean(dim=0, keepdim=True)
|
171 |
+
log_tensor_stats(mean_embedding, "Mean Initializer Vector")
|
172 |
+
new_embed_matrix = create_hybrid_matrix(s_embeds, vocab_mapping, (t_config.vocab_size, t_config.hidden_size))
|
173 |
+
log_tensor_stats(new_embed_matrix, "Final Hybrid Embedding Matrix")
|
174 |
+
new_state_dict['model.embed_tokens.weight'] = new_embed_matrix
|
175 |
+
verify_embedding_transfer(s_embeds, new_embed_matrix, vocab_mapping, t_tokenizer)
|
176 |
+
|
177 |
+
# LM Head
|
178 |
+
print("\nProcessing lm_head.weight...")
|
179 |
+
s_lm_head = s_state_dict['lm_head.weight']
|
180 |
+
new_lm_head_matrix = create_hybrid_matrix(s_lm_head, vocab_mapping, (t_config.vocab_size, t_config.hidden_size))
|
181 |
+
log_tensor_stats(new_lm_head_matrix, "Final Hybrid LM Head Matrix")
|
182 |
+
new_state_dict['lm_head.weight'] = new_lm_head_matrix
|
183 |
+
|
184 |
+
# --- Process remaining layers ---
|
185 |
+
print("\n--- Processing Transformer Layers ---")
|
186 |
+
# Get all keys except the ones we already handled
|
187 |
+
remaining_keys = [k for k in t_model.state_dict().keys() if 'embed_tokens' not in k and 'lm_head' not in k]
|
188 |
+
|
189 |
+
for key in tqdm(remaining_keys, desc="Transferring layer weights"):
|
190 |
+
if "q_norm" in key or "k_norm" in key:
|
191 |
+
match = re.search(r'layers\.(\d+)\.', key)
|
192 |
+
if match:
|
193 |
+
target_layer_idx = int(match.group(1))
|
194 |
+
donor_layer_idx = target_layer_idx % num_donor_layers
|
195 |
+
donor_key = key.replace(f'layers.{target_layer_idx}.', f'layers.{donor_layer_idx}.')
|
196 |
+
new_state_dict[key] = d_state_dict[donor_key].clone()
|
197 |
+
elif key in s_state_dict:
|
198 |
+
new_state_dict[key] = s_state_dict[key].clone()
|
199 |
+
else:
|
200 |
+
print(f" ⚠️ Unhandled key: {key} (not in source, skipping)")
|
201 |
+
|
202 |
+
# --- Final Diagnostic Checks ---
|
203 |
+
verify_grafted_layer(new_state_dict, d_state_dict, target_layer_idx=num_donor_layers, donor_layer_idx=0)
|
204 |
+
all_clean = check_for_nan_inf(new_state_dict)
|
205 |
+
if not all_clean:
|
206 |
+
print("\nCRITICAL ERROR: NaN/Inf values detected. Aborting before save.")
|
207 |
+
return # Stop the process
|
208 |
+
|
209 |
+
# --- Step 5: Save ---
|
210 |
+
print("\n[Step 5/6] Saving final model and supporting files...")
|
211 |
+
t_model.load_state_dict(new_state_dict) # Load into meta-model
|
212 |
+
t_model.save_pretrained(target_model_path, safe_serialization=True, state_dict=new_state_dict)
|
213 |
+
t_tokenizer.save_pretrained(target_model_path)
|
214 |
+
print(f"✅ Model saved to: {target_model_path}")
|
215 |
+
|
216 |
+
# --- Step 6: Validate ---
|
217 |
+
del s_model, d_model, s_state_dict, d_state_dict, new_state_dict, t_model
|
218 |
+
torch.cuda.empty_cache()
|
219 |
+
validate_model_diagnostic(path=target_model_path)
|
220 |
+
|
221 |
+
if __name__ == "__main__":
|
222 |
+
convert_qwen2_to_qwen3_diagnostic()
|