Update README.md
Browse files
README.md
CHANGED
|
@@ -1 +1,406 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
---
|
| 4 |
+
# OpenGR00T-N1.5-3B-Zero
|
| 5 |
+
|
| 6 |
+
A fully open-source, randomly initialized version of the GR00T-N1.5-3B architecture for humanoid robot control. This model has the exact same architecture as NVIDIA's GR00T-N1.5-3B but with random weights and Apache-2.0 licensing.
|
| 7 |
+
|
| 8 |
+
## Model Description
|
| 9 |
+
|
| 10 |
+
OpenGR00T-N1.5-3B-Zero is a Vision-Language-Action (VLA) model designed for humanoid robot control:
|
| 11 |
+
|
| 12 |
+
- **Architecture**: Dual-system design with vision-language backbone (Eagle-based with Qwen3 LLM) and diffusion transformer action head
|
| 13 |
+
- **Parameters**: 2,724M total (1,655M backbone in bfloat16, 1,069M action head in float32)
|
| 14 |
+
- **License**: Apache-2.0 (fully open source)
|
| 15 |
+
- **Weights**: Randomly initialized - no pre-training, ready for your own training
|
| 16 |
+
|
| 17 |
+
## Key Features
|
| 18 |
+
|
| 19 |
+
- ✅ **Exact architecture match** with NVIDIA GR00T-N1.5-3B
|
| 20 |
+
- ✅ **No license restrictions** - Apache-2.0 throughout
|
| 21 |
+
- ✅ **Mixed precision ready** - bfloat16 backbone, float32 action head
|
| 22 |
+
- ✅ **Multi-modal inputs** - images, language instructions, and robot proprioception
|
| 23 |
+
- ✅ **Continuous action output** via diffusion transformer
|
| 24 |
+
|
| 25 |
+
## Installation
|
| 26 |
+
|
| 27 |
+
```bash
|
| 28 |
+
pip install torch transformers safetensors
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
## Usage
|
| 32 |
+
|
| 33 |
+
### Loading the Model
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
import torch
|
| 37 |
+
from transformers import AutoModel, AutoTokenizer
|
| 38 |
+
|
| 39 |
+
# Load model
|
| 40 |
+
model = AutoModel.from_pretrained(
|
| 41 |
+
"OpenGR00T-N1.5-3B-Zero",
|
| 42 |
+
trust_remote_code=True,
|
| 43 |
+
torch_dtype="auto"
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Load tokenizer
|
| 47 |
+
tokenizer = AutoTokenizer.from_pretrained("OpenGR00T-N1.5-3B-Zero")
|
| 48 |
+
|
| 49 |
+
# Move to GPU if available
|
| 50 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 51 |
+
model = model.to(device)
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
### Inference Example
|
| 55 |
+
|
| 56 |
+
```python
|
| 57 |
+
import torch
|
| 58 |
+
import torch.nn.functional as F
|
| 59 |
+
from PIL import Image
|
| 60 |
+
import numpy as np
|
| 61 |
+
|
| 62 |
+
def prepare_image(image_path, target_size=(224, 224)):
|
| 63 |
+
"""Prepare image for model input"""
|
| 64 |
+
image = Image.open(image_path).convert('RGB')
|
| 65 |
+
image = image.resize(target_size)
|
| 66 |
+
# Normalize to [-1, 1]
|
| 67 |
+
image = np.array(image).astype(np.float32) / 127.5 - 1.0
|
| 68 |
+
image = torch.from_numpy(image).permute(2, 0, 1)
|
| 69 |
+
return image
|
| 70 |
+
|
| 71 |
+
def inference(model, tokenizer, image_paths, instruction, robot_state, device):
|
| 72 |
+
"""
|
| 73 |
+
Run inference to generate robot actions
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
image_paths: List of paths to camera images
|
| 77 |
+
instruction: Natural language instruction
|
| 78 |
+
robot_state: Current robot proprioception (joint angles, etc.)
|
| 79 |
+
device: torch device
|
| 80 |
+
|
| 81 |
+
Returns:
|
| 82 |
+
actions: Predicted robot actions
|
| 83 |
+
"""
|
| 84 |
+
model.eval()
|
| 85 |
+
|
| 86 |
+
with torch.no_grad():
|
| 87 |
+
# Prepare inputs
|
| 88 |
+
images = torch.stack([prepare_image(path) for path in image_paths])
|
| 89 |
+
images = images.unsqueeze(0).to(device) # Add batch dimension
|
| 90 |
+
|
| 91 |
+
# Tokenize instruction
|
| 92 |
+
text_inputs = tokenizer(
|
| 93 |
+
instruction,
|
| 94 |
+
return_tensors="pt",
|
| 95 |
+
padding=True,
|
| 96 |
+
truncation=True,
|
| 97 |
+
max_length=256
|
| 98 |
+
).to(device)
|
| 99 |
+
|
| 100 |
+
# Robot state (example: 32-dim joint angles)
|
| 101 |
+
if isinstance(robot_state, list):
|
| 102 |
+
robot_state = torch.tensor(robot_state, dtype=torch.float32)
|
| 103 |
+
robot_state = robot_state.unsqueeze(0).to(device)
|
| 104 |
+
|
| 105 |
+
# Forward pass through backbone
|
| 106 |
+
# Note: This is a simplified example - actual implementation depends on model interface
|
| 107 |
+
vision_features = model.backbone.eagle_model.vision_model(images)
|
| 108 |
+
|
| 109 |
+
# Process language
|
| 110 |
+
language_features = model.backbone.eagle_model.language_model.model(
|
| 111 |
+
input_ids=text_inputs.input_ids,
|
| 112 |
+
attention_mask=text_inputs.attention_mask
|
| 113 |
+
).last_hidden_state
|
| 114 |
+
|
| 115 |
+
# Combine features (simplified - actual fusion may be more complex)
|
| 116 |
+
combined_features = torch.cat([
|
| 117 |
+
vision_features.mean(dim=1), # Pool vision features
|
| 118 |
+
language_features.mean(dim=1) # Pool language features
|
| 119 |
+
], dim=-1)
|
| 120 |
+
|
| 121 |
+
# Generate actions through diffusion process
|
| 122 |
+
# This is a simplified placeholder - actual diffusion requires multiple steps
|
| 123 |
+
action_features = model.action_head.model(
|
| 124 |
+
combined_features,
|
| 125 |
+
timesteps=torch.zeros(1, device=device),
|
| 126 |
+
context=robot_state
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
# Decode to action space
|
| 130 |
+
actions = model.action_head.action_decoder(action_features)
|
| 131 |
+
|
| 132 |
+
return actions
|
| 133 |
+
|
| 134 |
+
# Example usage
|
| 135 |
+
image_paths = ["camera1.jpg", "camera2.jpg"]
|
| 136 |
+
instruction = "Pick up the red cube and place it on the table"
|
| 137 |
+
robot_state = torch.randn(32) # Example: 32 joint angles
|
| 138 |
+
|
| 139 |
+
actions = inference(model, tokenizer, image_paths, instruction, robot_state, device)
|
| 140 |
+
print(f"Predicted actions shape: {actions.shape}")
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
### Training Example
|
| 144 |
+
|
| 145 |
+
```python
|
| 146 |
+
import torch
|
| 147 |
+
import torch.nn as nn
|
| 148 |
+
from torch.utils.data import DataLoader, Dataset
|
| 149 |
+
from transformers import get_linear_schedule_with_warmup
|
| 150 |
+
|
| 151 |
+
class RobotDataset(Dataset):
|
| 152 |
+
"""Example dataset for robot manipulation tasks"""
|
| 153 |
+
def __init__(self, data_path, tokenizer, transform=None):
|
| 154 |
+
self.data = [] # Load your data here
|
| 155 |
+
self.tokenizer = tokenizer
|
| 156 |
+
self.transform = transform
|
| 157 |
+
|
| 158 |
+
def __len__(self):
|
| 159 |
+
return len(self.data)
|
| 160 |
+
|
| 161 |
+
def __getitem__(self, idx):
|
| 162 |
+
# Return dict with keys: images, instruction, robot_state, target_actions
|
| 163 |
+
sample = self.data[idx]
|
| 164 |
+
|
| 165 |
+
# Process images
|
| 166 |
+
images = torch.stack([self.transform(img) for img in sample['images']])
|
| 167 |
+
|
| 168 |
+
# Tokenize instruction
|
| 169 |
+
text = self.tokenizer(
|
| 170 |
+
sample['instruction'],
|
| 171 |
+
return_tensors="pt",
|
| 172 |
+
padding="max_length",
|
| 173 |
+
truncation=True,
|
| 174 |
+
max_length=256
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
return {
|
| 178 |
+
'images': images,
|
| 179 |
+
'input_ids': text['input_ids'].squeeze(),
|
| 180 |
+
'attention_mask': text['attention_mask'].squeeze(),
|
| 181 |
+
'robot_state': torch.tensor(sample['robot_state'], dtype=torch.float32),
|
| 182 |
+
'target_actions': torch.tensor(sample['target_actions'], dtype=torch.float32)
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
def train_step(model, batch, criterion, device):
|
| 186 |
+
"""Single training step"""
|
| 187 |
+
# Move batch to device
|
| 188 |
+
images = batch['images'].to(device)
|
| 189 |
+
input_ids = batch['input_ids'].to(device)
|
| 190 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 191 |
+
robot_state = batch['robot_state'].to(device)
|
| 192 |
+
target_actions = batch['target_actions'].to(device)
|
| 193 |
+
|
| 194 |
+
# Forward pass (simplified - actual implementation may differ)
|
| 195 |
+
# Process vision
|
| 196 |
+
vision_features = model.backbone.eagle_model.vision_model(images)
|
| 197 |
+
|
| 198 |
+
# Process language
|
| 199 |
+
language_output = model.backbone.eagle_model.language_model.model(
|
| 200 |
+
input_ids=input_ids,
|
| 201 |
+
attention_mask=attention_mask
|
| 202 |
+
)
|
| 203 |
+
language_features = language_output.last_hidden_state
|
| 204 |
+
|
| 205 |
+
# Combine modalities
|
| 206 |
+
combined_features = torch.cat([
|
| 207 |
+
vision_features.mean(dim=1),
|
| 208 |
+
language_features.mean(dim=1)
|
| 209 |
+
], dim=-1)
|
| 210 |
+
|
| 211 |
+
# Generate actions (simplified diffusion)
|
| 212 |
+
predicted_actions = model.action_head(
|
| 213 |
+
combined_features,
|
| 214 |
+
context=robot_state
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
# Compute loss
|
| 218 |
+
loss = criterion(predicted_actions, target_actions)
|
| 219 |
+
|
| 220 |
+
return loss
|
| 221 |
+
|
| 222 |
+
# Training setup
|
| 223 |
+
def train_model(model, train_dataset, val_dataset, config):
|
| 224 |
+
"""Main training loop"""
|
| 225 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 226 |
+
model = model.to(device)
|
| 227 |
+
|
| 228 |
+
# Create dataloaders
|
| 229 |
+
train_loader = DataLoader(
|
| 230 |
+
train_dataset,
|
| 231 |
+
batch_size=config['batch_size'],
|
| 232 |
+
shuffle=True,
|
| 233 |
+
num_workers=4
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
val_loader = DataLoader(
|
| 237 |
+
val_dataset,
|
| 238 |
+
batch_size=config['batch_size'],
|
| 239 |
+
shuffle=False,
|
| 240 |
+
num_workers=4
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
# Setup optimizer with different learning rates for backbone and action head
|
| 244 |
+
optimizer = torch.optim.AdamW([
|
| 245 |
+
{'params': model.backbone.parameters(), 'lr': config['backbone_lr']},
|
| 246 |
+
{'params': model.action_head.parameters(), 'lr': config['action_head_lr']}
|
| 247 |
+
], weight_decay=config['weight_decay'])
|
| 248 |
+
|
| 249 |
+
# Learning rate scheduler
|
| 250 |
+
num_training_steps = len(train_loader) * config['num_epochs']
|
| 251 |
+
scheduler = get_linear_schedule_with_warmup(
|
| 252 |
+
optimizer,
|
| 253 |
+
num_warmup_steps=config['warmup_steps'],
|
| 254 |
+
num_training_steps=num_training_steps
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# Loss function
|
| 258 |
+
criterion = nn.MSELoss() # or nn.L1Loss() for action prediction
|
| 259 |
+
|
| 260 |
+
# Training loop
|
| 261 |
+
for epoch in range(config['num_epochs']):
|
| 262 |
+
model.train()
|
| 263 |
+
total_loss = 0
|
| 264 |
+
|
| 265 |
+
for batch_idx, batch in enumerate(train_loader):
|
| 266 |
+
optimizer.zero_grad()
|
| 267 |
+
|
| 268 |
+
loss = train_step(model, batch, criterion, device)
|
| 269 |
+
|
| 270 |
+
loss.backward()
|
| 271 |
+
|
| 272 |
+
# Gradient clipping
|
| 273 |
+
torch.nn.utils.clip_grad_norm_(
|
| 274 |
+
model.parameters(),
|
| 275 |
+
config['max_grad_norm']
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
optimizer.step()
|
| 279 |
+
scheduler.step()
|
| 280 |
+
|
| 281 |
+
total_loss += loss.item()
|
| 282 |
+
|
| 283 |
+
if batch_idx % config['log_interval'] == 0:
|
| 284 |
+
print(f"Epoch {epoch}, Batch {batch_idx}, Loss: {loss.item():.4f}")
|
| 285 |
+
|
| 286 |
+
# Validation
|
| 287 |
+
model.eval()
|
| 288 |
+
val_loss = 0
|
| 289 |
+
with torch.no_grad():
|
| 290 |
+
for batch in val_loader:
|
| 291 |
+
loss = train_step(model, batch, criterion, device)
|
| 292 |
+
val_loss += loss.item()
|
| 293 |
+
|
| 294 |
+
avg_train_loss = total_loss / len(train_loader)
|
| 295 |
+
avg_val_loss = val_loss / len(val_loader)
|
| 296 |
+
|
| 297 |
+
print(f"Epoch {epoch}: Train Loss: {avg_train_loss:.4f}, Val Loss: {avg_val_loss:.4f}")
|
| 298 |
+
|
| 299 |
+
# Save checkpoint
|
| 300 |
+
if (epoch + 1) % config['save_interval'] == 0:
|
| 301 |
+
torch.save({
|
| 302 |
+
'epoch': epoch,
|
| 303 |
+
'model_state_dict': model.state_dict(),
|
| 304 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
| 305 |
+
'scheduler_state_dict': scheduler.state_dict(),
|
| 306 |
+
'train_loss': avg_train_loss,
|
| 307 |
+
'val_loss': avg_val_loss,
|
| 308 |
+
}, f"checkpoint_epoch_{epoch+1}.pt")
|
| 309 |
+
|
| 310 |
+
# Example configuration
|
| 311 |
+
config = {
|
| 312 |
+
'batch_size': 16,
|
| 313 |
+
'num_epochs': 100,
|
| 314 |
+
'backbone_lr': 1e-5,
|
| 315 |
+
'action_head_lr': 1e-4,
|
| 316 |
+
'weight_decay': 0.01,
|
| 317 |
+
'warmup_steps': 1000,
|
| 318 |
+
'max_grad_norm': 1.0,
|
| 319 |
+
'log_interval': 10,
|
| 320 |
+
'save_interval': 10
|
| 321 |
+
}
|
| 322 |
+
|
| 323 |
+
# Create dataset (you need to implement data loading)
|
| 324 |
+
# train_dataset = RobotDataset("path/to/train/data", tokenizer)
|
| 325 |
+
# val_dataset = RobotDataset("path/to/val/data", tokenizer)
|
| 326 |
+
|
| 327 |
+
# Train model
|
| 328 |
+
# train_model(model, train_dataset, val_dataset, config)
|
| 329 |
+
```
|
| 330 |
+
|
| 331 |
+
### Fine-tuning Tips
|
| 332 |
+
|
| 333 |
+
1. **Mixed Precision Training**: The model is designed for mixed precision. Use `torch.cuda.amp` for faster training:
|
| 334 |
+
```python
|
| 335 |
+
from torch.cuda.amp import GradScaler, autocast
|
| 336 |
+
|
| 337 |
+
scaler = GradScaler()
|
| 338 |
+
|
| 339 |
+
with autocast():
|
| 340 |
+
loss = train_step(model, batch, criterion, device)
|
| 341 |
+
|
| 342 |
+
scaler.scale(loss).backward()
|
| 343 |
+
scaler.step(optimizer)
|
| 344 |
+
scaler.update()
|
| 345 |
+
```
|
| 346 |
+
|
| 347 |
+
2. **Gradient Checkpointing**: For memory-efficient training:
|
| 348 |
+
```python
|
| 349 |
+
model.backbone.eagle_model.language_model.gradient_checkpointing_enable()
|
| 350 |
+
```
|
| 351 |
+
|
| 352 |
+
3. **Frozen Backbone Training**: Start by training only the action head:
|
| 353 |
+
```python
|
| 354 |
+
# Freeze backbone
|
| 355 |
+
for param in model.backbone.parameters():
|
| 356 |
+
param.requires_grad = False
|
| 357 |
+
|
| 358 |
+
# Train only action head
|
| 359 |
+
optimizer = torch.optim.AdamW(
|
| 360 |
+
model.action_head.parameters(),
|
| 361 |
+
lr=1e-4
|
| 362 |
+
)
|
| 363 |
+
```
|
| 364 |
+
|
| 365 |
+
## Model Architecture
|
| 366 |
+
|
| 367 |
+
The model consists of two main components:
|
| 368 |
+
|
| 369 |
+
### 1. Vision-Language Backbone (System 2)
|
| 370 |
+
- **Vision Encoder**: Based on Eagle vision model with 27 transformer layers
|
| 371 |
+
- **Language Model**: Qwen3-based LLM with 12 layers, 2048 hidden dim
|
| 372 |
+
- **Cross-modal Fusion**: MLP connector between vision and language
|
| 373 |
+
|
| 374 |
+
### 2. Action Head (System 1)
|
| 375 |
+
- **Diffusion Transformer**: 16 DiT blocks for action generation
|
| 376 |
+
- **State Encoder**: Processes robot proprioception
|
| 377 |
+
- **Action Decoder**: Outputs continuous robot actions
|
| 378 |
+
- **Self-Attention Blocks**: 4 transformer blocks for vision-language features
|
| 379 |
+
|
| 380 |
+
## Limitations
|
| 381 |
+
|
| 382 |
+
- This is a **blank model** with random weights - it requires training before use
|
| 383 |
+
- No pre-trained knowledge or capabilities
|
| 384 |
+
- Designed for humanoid robots but can be adapted for other embodiments
|
| 385 |
+
- Requires significant computational resources for training
|
| 386 |
+
|
| 387 |
+
## Citation
|
| 388 |
+
|
| 389 |
+
If you use this model in your research, please cite:
|
| 390 |
+
|
| 391 |
+
```bibtex
|
| 392 |
+
@software{opengr00t2024,
|
| 393 |
+
title={OpenGR00T-N1.5-3B-Zero: Open Source Blank GR00T Architecture},
|
| 394 |
+
author={Community Contributors},
|
| 395 |
+
year={2024},
|
| 396 |
+
license={Apache-2.0}
|
| 397 |
+
}
|
| 398 |
+
```
|
| 399 |
+
|
| 400 |
+
## License
|
| 401 |
+
|
| 402 |
+
Apache-2.0 - This model is fully open source with no restrictions.
|
| 403 |
+
|
| 404 |
+
## Acknowledgments
|
| 405 |
+
|
| 406 |
+
This is an independent implementation of the GR00T architecture for the open-source community. The architecture is based on publicly available information about NVIDIA's GR00T-N1.5 model, but contains no proprietary code or weights.
|