Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
|
4 |
+
license: apache-2.0
|
5 |
+
datasets:
|
6 |
+
- internlm/Lean-Workbook
|
7 |
+
- internlm/Lean-Github
|
8 |
+
- AI-MO/NuminaMath-CoT
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
base_model:
|
12 |
+
- Qwen/Qwen2.5-Math-7B
|
13 |
+
pipeline_tag: text-generation
|
14 |
+
library_name: transformers
|
15 |
+
tags:
|
16 |
+
- lean4
|
17 |
+
- theorem-proving
|
18 |
+
- formal-mathematics
|
19 |
+
|
20 |
+
---
|
21 |
+
|
22 |
+
[](https://hf.co/QuantFactory)
|
23 |
+
|
24 |
+
|
25 |
+
# QuantFactory/BFS-Prover-GGUF
|
26 |
+
This is quantized version of [bytedance-research/BFS-Prover](https://huggingface.co/bytedance-research/BFS-Prover) created using llama.cpp
|
27 |
+
|
28 |
+
# Original Model Card
|
29 |
+
|
30 |
+
|
31 |
+
<div align="center">
|
32 |
+
<h1 style="font-size: 2.0em;">🚀 BFS-Prover: Scalable Best-First Tree Search for LLM-based Automatic Theorem Proving</h1>
|
33 |
+
<div style="display: flex; justify-content: center; gap: 8px; flex-wrap: wrap;">
|
34 |
+
<a href="https://arxiv.org/abs/2502.03438"><img src="https://img.shields.io/badge/arXiv-2502.03438-b31b1b.svg" alt="arXiv"></a>
|
35 |
+
<a href="https://choosealicense.com/licenses/apache-2.0/"><img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg" alt="License: Apache 2.0"></a>
|
36 |
+
<a href="https://github.com/leanprover-community/mathlib4"><img src="https://img.shields.io/badge/Lean-4-orange" alt="Lean 4"></a>
|
37 |
+
</div>
|
38 |
+
<h2>State-of-the-art tactic generation model in Lean4</h2>
|
39 |
+
</div>
|
40 |
+
|
41 |
+
This repository contains the latest tactic generator model checkpoint from BFS-Prover, a state-of-the-art theorem proving system in Lean4. While the full BFS-Prover system integrates multiple components for scalable theorem proving, we are releasing the core tactic generation model here. Given a proof state in Lean4, the model generates a tactic that transforms the current proof state into a new state, progressively working towards completing the proof.
|
42 |
+
|
43 |
+
**📄 Paper: [BFS-Prover: Scalable Best-First Tree Search for LLM-based Automatic Theorem Proving](https://arxiv.org/abs/2502.03438)**
|
44 |
+
|
45 |
+
|
46 |
+
## ✨ Model Details
|
47 |
+
|
48 |
+
- Base Model: Qwen2.5-Math-7B
|
49 |
+
- Training Approach:
|
50 |
+
- Supervised Fine-Tuning (SFT) on state-tactic pairs
|
51 |
+
- Direct Preference Optimization (DPO) using compiler feedback
|
52 |
+
- Training Data Sources:
|
53 |
+
- Mathlib (via LeanDojo)
|
54 |
+
- Lean-Github repositories
|
55 |
+
- Lean-Workbook
|
56 |
+
- Autoformalized NuminaMath-CoT dataset
|
57 |
+
|
58 |
+
## 📈 Performance
|
59 |
+
BFS-Prover achieves state-of-the-art performance on the MiniF2F test benchmark. Here's a detailed comparison:
|
60 |
+
|
61 |
+
### 🔍 MiniF2F Test Benchmark Results
|
62 |
+
|
63 |
+
| Prover System | Search Method | Critic Model | Tactic Budget | Score |
|
64 |
+
|---------------|---------------|--------------|---------------|--------|
|
65 |
+
| BFS-Prover | BFS | No | Accumulative | **72.95%** |
|
66 |
+
| BFS-Prover | BFS | No | 2048×2×600 | **70.83% ± 0.89%** |
|
67 |
+
| HunyuanProver | BFS | Yes | 600×8×400 | 68.4% |
|
68 |
+
| InternLM2.5-StepProver | BFS | Yes | 256×32×600 | 65.9% |
|
69 |
+
| DeepSeek-Prover-V1.5 | MCTS | No | 32×16×400 | 63.5% |
|
70 |
+
|
71 |
+
|
72 |
+
### 🔑 Key Advantages
|
73 |
+
- ✅ Achieves better performance without requiring a critic model (value function)
|
74 |
+
- ✅ Combined with simpler search method (BFS) rather than MCTS
|
75 |
+
|
76 |
+
## ⚙️ Usage
|
77 |
+
- The model expects Lean4 tactic states in the format `"{state}:::"`
|
78 |
+
- `:::` serves as a special indicator to signal the model to generate a tactic for the given state.
|
79 |
+
- The model will echo back the input state followed by the generated tactic.
|
80 |
+
|
81 |
+
|
82 |
+
```python
|
83 |
+
# Example code for loading and using the tactic generator model
|
84 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
85 |
+
|
86 |
+
model = AutoModelForCausalLM.from_pretrained("bytedance-research/BFS-Prover")
|
87 |
+
tokenizer = AutoTokenizer.from_pretrained("bytedance-research/BFS-Prover")
|
88 |
+
state = "h : x = y + 2 ⊢ x - 1 = y + 1"
|
89 |
+
sep = ":::"
|
90 |
+
prompt = state + sep # Creates "h : x = y + 2 ⊢ x - 1 = y + 1:::"
|
91 |
+
|
92 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
93 |
+
outputs = model.generate(**inputs)
|
94 |
+
tactic = tokenizer.decode(outputs[0], skip_special_tokens=True).split(sep)[1]
|
95 |
+
print(tactic)
|
96 |
+
|
97 |
+
# Complete example:
|
98 |
+
# Input state: "h : x = y + 2 ⊢ x - 1 = y + 1"
|
99 |
+
# Full prompt: "h : x = y + 2 ⊢ x - 1 = y + 1:::"
|
100 |
+
# Model output: "h : x = y + 2 ⊢ x - 1 = y + 1:::simp [h]"
|
101 |
+
# Final tactic: "simp [h]"
|
102 |
+
```
|
103 |
+
|
104 |
+
## 📚 Citation
|
105 |
+
|
106 |
+
If you use this model in your research, please cite our paper:
|
107 |
+
|
108 |
+
```bibtex
|
109 |
+
@article{xin2025bfs,
|
110 |
+
title={BFS-Prover: Scalable Best-First Tree Search for LLM-based Automatic Theorem Proving},
|
111 |
+
author={Xin, Ran and Xi, Chenguang and Yang, Jie and Chen, Feng and Wu, Hang and Xiao, Xia and Sun, Yifan and Zheng, Shen and Shen, Kai},
|
112 |
+
journal={arXiv preprint arXiv:2502.03438},
|
113 |
+
year={2025}
|
114 |
+
}
|
115 |
+
```
|
116 |
+
|
117 |
+
## 📄 License
|
118 |
+
|
119 |
+
https://choosealicense.com/licenses/apache-2.0/
|
120 |
+
|
121 |
+
## 📧 Contact
|
122 |
+
|
123 |
+
For questions and feedback about the tactic generator model, please contact:
|
124 |
+
- Ran Xin ([email protected])
|
125 |
+
- Kai Shen ([email protected])
|