Text Generation
Transformers
GGUF
English
lean4
theorem-proving
formal-mathematics
conversational
aashish1904 commited on
Commit
34209fb
·
verified ·
1 Parent(s): 0496a5e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +125 -0
README.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: apache-2.0
5
+ datasets:
6
+ - internlm/Lean-Workbook
7
+ - internlm/Lean-Github
8
+ - AI-MO/NuminaMath-CoT
9
+ language:
10
+ - en
11
+ base_model:
12
+ - Qwen/Qwen2.5-Math-7B
13
+ pipeline_tag: text-generation
14
+ library_name: transformers
15
+ tags:
16
+ - lean4
17
+ - theorem-proving
18
+ - formal-mathematics
19
+
20
+ ---
21
+
22
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
23
+
24
+
25
+ # QuantFactory/BFS-Prover-GGUF
26
+ This is quantized version of [bytedance-research/BFS-Prover](https://huggingface.co/bytedance-research/BFS-Prover) created using llama.cpp
27
+
28
+ # Original Model Card
29
+
30
+
31
+ <div align="center">
32
+ <h1 style="font-size: 2.0em;">🚀 BFS-Prover: Scalable Best-First Tree Search for LLM-based Automatic Theorem Proving</h1>
33
+ <div style="display: flex; justify-content: center; gap: 8px; flex-wrap: wrap;">
34
+ <a href="https://arxiv.org/abs/2502.03438"><img src="https://img.shields.io/badge/arXiv-2502.03438-b31b1b.svg" alt="arXiv"></a>
35
+ <a href="https://choosealicense.com/licenses/apache-2.0/"><img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg" alt="License: Apache 2.0"></a>
36
+ <a href="https://github.com/leanprover-community/mathlib4"><img src="https://img.shields.io/badge/Lean-4-orange" alt="Lean 4"></a>
37
+ </div>
38
+ <h2>State-of-the-art tactic generation model in Lean4</h2>
39
+ </div>
40
+
41
+ This repository contains the latest tactic generator model checkpoint from BFS-Prover, a state-of-the-art theorem proving system in Lean4. While the full BFS-Prover system integrates multiple components for scalable theorem proving, we are releasing the core tactic generation model here. Given a proof state in Lean4, the model generates a tactic that transforms the current proof state into a new state, progressively working towards completing the proof.
42
+
43
+ **📄 Paper: [BFS-Prover: Scalable Best-First Tree Search for LLM-based Automatic Theorem Proving](https://arxiv.org/abs/2502.03438)**
44
+
45
+
46
+ ## ✨ Model Details
47
+
48
+ - Base Model: Qwen2.5-Math-7B
49
+ - Training Approach:
50
+ - Supervised Fine-Tuning (SFT) on state-tactic pairs
51
+ - Direct Preference Optimization (DPO) using compiler feedback
52
+ - Training Data Sources:
53
+ - Mathlib (via LeanDojo)
54
+ - Lean-Github repositories
55
+ - Lean-Workbook
56
+ - Autoformalized NuminaMath-CoT dataset
57
+
58
+ ## 📈 Performance
59
+ BFS-Prover achieves state-of-the-art performance on the MiniF2F test benchmark. Here's a detailed comparison:
60
+
61
+ ### 🔍 MiniF2F Test Benchmark Results
62
+
63
+ | Prover System | Search Method | Critic Model | Tactic Budget | Score |
64
+ |---------------|---------------|--------------|---------------|--------|
65
+ | BFS-Prover | BFS | No | Accumulative | **72.95%** |
66
+ | BFS-Prover | BFS | No | 2048×2×600 | **70.83% ± 0.89%** |
67
+ | HunyuanProver | BFS | Yes | 600×8×400 | 68.4% |
68
+ | InternLM2.5-StepProver | BFS | Yes | 256×32×600 | 65.9% |
69
+ | DeepSeek-Prover-V1.5 | MCTS | No | 32×16×400 | 63.5% |
70
+
71
+
72
+ ### 🔑 Key Advantages
73
+ - ✅ Achieves better performance without requiring a critic model (value function)
74
+ - ✅ Combined with simpler search method (BFS) rather than MCTS
75
+
76
+ ## ⚙️ Usage
77
+ - The model expects Lean4 tactic states in the format `"{state}:::"`
78
+ - `:::` serves as a special indicator to signal the model to generate a tactic for the given state.
79
+ - The model will echo back the input state followed by the generated tactic.
80
+
81
+
82
+ ```python
83
+ # Example code for loading and using the tactic generator model
84
+ from transformers import AutoModelForCausalLM, AutoTokenizer
85
+
86
+ model = AutoModelForCausalLM.from_pretrained("bytedance-research/BFS-Prover")
87
+ tokenizer = AutoTokenizer.from_pretrained("bytedance-research/BFS-Prover")
88
+ state = "h : x = y + 2 ⊢ x - 1 = y + 1"
89
+ sep = ":::"
90
+ prompt = state + sep # Creates "h : x = y + 2 ⊢ x - 1 = y + 1:::"
91
+
92
+ inputs = tokenizer(prompt, return_tensors="pt")
93
+ outputs = model.generate(**inputs)
94
+ tactic = tokenizer.decode(outputs[0], skip_special_tokens=True).split(sep)[1]
95
+ print(tactic)
96
+
97
+ # Complete example:
98
+ # Input state: "h : x = y + 2 ⊢ x - 1 = y + 1"
99
+ # Full prompt: "h : x = y + 2 ⊢ x - 1 = y + 1:::"
100
+ # Model output: "h : x = y + 2 ⊢ x - 1 = y + 1:::simp [h]"
101
+ # Final tactic: "simp [h]"
102
+ ```
103
+
104
+ ## 📚 Citation
105
+
106
+ If you use this model in your research, please cite our paper:
107
+
108
+ ```bibtex
109
+ @article{xin2025bfs,
110
+ title={BFS-Prover: Scalable Best-First Tree Search for LLM-based Automatic Theorem Proving},
111
+ author={Xin, Ran and Xi, Chenguang and Yang, Jie and Chen, Feng and Wu, Hang and Xiao, Xia and Sun, Yifan and Zheng, Shen and Shen, Kai},
112
+ journal={arXiv preprint arXiv:2502.03438},
113
+ year={2025}
114
+ }
115
+ ```
116
+
117
+ ## 📄 License
118
+
119
+ https://choosealicense.com/licenses/apache-2.0/
120
+
121
+ ## 📧 Contact
122
+
123
+ For questions and feedback about the tactic generator model, please contact:
124
+ - Ran Xin ([email protected])
125
+ - Kai Shen ([email protected])