Commit
·
3513fce
1
Parent(s):
536b1bb
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,374 @@
|
|
| 1 |
---
|
| 2 |
license: gpl-3.0
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: gpl-3.0
|
| 3 |
+
pipeline_tag: graph-ml
|
| 4 |
+
tags:
|
| 5 |
+
- code
|
| 6 |
---
|
| 7 |
+
---
|
| 8 |
+
license: gpl-3.0
|
| 9 |
+
pipeline_tag: graph-ml
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
import contextlib
|
| 13 |
+
import os
|
| 14 |
+
from matplotlib import pyplot as plt
|
| 15 |
+
import numpy as np
|
| 16 |
+
import torch
|
| 17 |
+
import torch.nn as nn
|
| 18 |
+
import torch.optim as optim
|
| 19 |
+
import requests
|
| 20 |
+
from torchvision import datasets, transforms
|
| 21 |
+
import psutil
|
| 22 |
+
import time
|
| 23 |
+
import subprocess
|
| 24 |
+
import onnxruntime as ort
|
| 25 |
+
import matplotlib.pyplot as plt
|
| 26 |
+
import numpy as np
|
| 27 |
+
import numexpr as ne
|
| 28 |
+
|
| 29 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 30 |
+
|
| 31 |
+
tokenizer = AutoTokenizer.from_pretrained("janpase97/codeformer-pretrained")
|
| 32 |
+
|
| 33 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("janpase97/codeformer-pretrained")
|
| 34 |
+
|
| 35 |
+
def check_graphics_api(target_app_name):
|
| 36 |
+
graphics_api = None
|
| 37 |
+
|
| 38 |
+
with contextlib.suppress(subprocess.CalledProcessError):
|
| 39 |
+
output = subprocess.check_output(['tasklist', '/FI', f'imagename eq {target_app_name}', '/M']).decode('utf-8')
|
| 40 |
+
if "opengl32.dll" in output:
|
| 41 |
+
graphics_api = "OpenGL"
|
| 42 |
+
elif "d3d11.dll" in output:
|
| 43 |
+
graphics_api = "DirectX11"
|
| 44 |
+
elif "d3d12.dll" in output:
|
| 45 |
+
graphics_api = "DirectX12"
|
| 46 |
+
elif "vulkan" in output:
|
| 47 |
+
graphics_api = "VULKAN"
|
| 48 |
+
return graphics_api
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# Get the target application's process object
|
| 52 |
+
def get_target_app_process(target_app_name):
|
| 53 |
+
return next(
|
| 54 |
+
(
|
| 55 |
+
process
|
| 56 |
+
for process in psutil.process_iter(['name'])
|
| 57 |
+
if process.info['name'] == target_app_name
|
| 58 |
+
),
|
| 59 |
+
None,
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# Attach the AI to the application's process by PID
|
| 63 |
+
def attach_ai_to_app_pid(target_app_process):
|
| 64 |
+
if target_app_process is not None:
|
| 65 |
+
print(f"AI is attached to the application's process with PID: {target_app_process.pid}")
|
| 66 |
+
return True
|
| 67 |
+
else:
|
| 68 |
+
print("Could not find the target application's process to attach the AI.")
|
| 69 |
+
return False
|
| 70 |
+
|
| 71 |
+
# Check if the targeted application is running
|
| 72 |
+
def is_target_app_running(target_app_name):
|
| 73 |
+
return any(
|
| 74 |
+
process.info['name'] == target_app_name
|
| 75 |
+
for process in psutil.process_iter(['name'])
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Create the directory if it doesn't exist
|
| 79 |
+
directory = r"G:\Epic Games\GTAV\GTA5_AI\trained_models"
|
| 80 |
+
if not os.path.exists(directory):
|
| 81 |
+
os.makedirs(directory)
|
| 82 |
+
|
| 83 |
+
# Define the neural network model
|
| 84 |
+
class NanoCircuit(nn.Module):
|
| 85 |
+
def __init__(self):
|
| 86 |
+
super(NanoCircuit, self).__init__()
|
| 87 |
+
self.fc1 = nn.Linear(784, 128)
|
| 88 |
+
self.fc2 = nn.Linear(128, 10)
|
| 89 |
+
|
| 90 |
+
def forward(self, x):
|
| 91 |
+
x = x.view(-1, 784) # Reshape the input from (batch_size, 28, 28) to (batch_size, 784)
|
| 92 |
+
x = torch.relu(self.fc1(x))
|
| 93 |
+
x = self.fc2(x)
|
| 94 |
+
return x
|
| 95 |
+
|
| 96 |
+
# Set the device to GPU if available
|
| 97 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 98 |
+
|
| 99 |
+
# Load the MNIST dataset
|
| 100 |
+
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
|
| 101 |
+
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
|
| 102 |
+
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# Initialize the model and move it to the GPU
|
| 106 |
+
model = NanoCircuit().to(device)
|
| 107 |
+
criterion = nn.CrossEntropyLoss()
|
| 108 |
+
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
|
| 109 |
+
|
| 110 |
+
# Train the model on the GPU with a data cap
|
| 111 |
+
def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_cap_gb):
|
| 112 |
+
data_processed = 0
|
| 113 |
+
data_cap_bytes = data_cap_gb * (1024 ** 3)
|
| 114 |
+
epoch = 0
|
| 115 |
+
|
| 116 |
+
while data_processed < data_cap_bytes:
|
| 117 |
+
running_loss = 0.0
|
| 118 |
+
for i, data in enumerate(data_loader, 0):
|
| 119 |
+
inputs, labels = data
|
| 120 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
| 121 |
+
|
| 122 |
+
# Update the amount of data processed
|
| 123 |
+
data_processed += inputs.nelement() * inputs.element_size()
|
| 124 |
+
if data_processed >= data_cap_bytes:
|
| 125 |
+
break
|
| 126 |
+
|
| 127 |
+
optimizer.zero_grad()
|
| 128 |
+
|
| 129 |
+
outputs = model(inputs.view(-1, 28 * 28))
|
| 130 |
+
loss = criterion(outputs, labels)
|
| 131 |
+
loss.backward()
|
| 132 |
+
optimizer.step()
|
| 133 |
+
|
| 134 |
+
running_loss += loss.item()
|
| 135 |
+
|
| 136 |
+
epoch += 1
|
| 137 |
+
print(f"Epoch {epoch}, Loss: {running_loss / (i + 1)}")
|
| 138 |
+
print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")
|
| 139 |
+
|
| 140 |
+
return model
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
# Save the updated model as a .onnx file
|
| 144 |
+
def save_model(model, filepath):
|
| 145 |
+
dummy_input = torch.randn(1, 1, 28, 28).to(device)
|
| 146 |
+
torch.onnx.export(model, dummy_input, filepath, input_names=['input'], output_names=['output'], opset_version=11)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
# Train the model with a 1 GB data cap
|
| 150 |
+
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=50)
|
| 151 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
| 152 |
+
|
| 153 |
+
target_app_name = "GTA5_TRAINED.exe"
|
| 154 |
+
save_interval_seconds = 5 * 60
|
| 155 |
+
application_was_running = False
|
| 156 |
+
while True:
|
| 157 |
+
if is_target_app_running(target_app_name):
|
| 158 |
+
print("Target application is running. Training and updating the model...")
|
| 159 |
+
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=.1)
|
| 160 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
| 161 |
+
application_was_running = True
|
| 162 |
+
elif application_was_running:
|
| 163 |
+
print("Target application has exited. Saving the model...")
|
| 164 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
| 165 |
+
print("Finished training and saved the model.")
|
| 166 |
+
break
|
| 167 |
+
else:
|
| 168 |
+
print("Target application is not running. Waiting to start training and updating the model...")
|
| 169 |
+
|
| 170 |
+
time.sleep(save_interval_seconds)
|
| 171 |
+
|
| 172 |
+
def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_cap_gb):
|
| 173 |
+
data_processed = 0
|
| 174 |
+
data_cap_bytes = data_cap_gb * (1024 ** 3)
|
| 175 |
+
epoch = 0
|
| 176 |
+
|
| 177 |
+
while data_processed < data_cap_bytes:
|
| 178 |
+
running_loss = 0.0
|
| 179 |
+
for i, data in enumerate(data_loader, 0):
|
| 180 |
+
inputs, labels = data
|
| 181 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
| 182 |
+
|
| 183 |
+
# Update the amount of data processed
|
| 184 |
+
data_processed += inputs.nelement() * inputs.element_size()
|
| 185 |
+
if data_processed >= data_cap_bytes:
|
| 186 |
+
break
|
| 187 |
+
|
| 188 |
+
optimizer.zero_grad()
|
| 189 |
+
|
| 190 |
+
# Compute the outputs and loss using numexpr
|
| 191 |
+
outputs = model(inputs.view(-1, 28 * 28))
|
| 192 |
+
outputs = outputs.cpu().detach().numpy()
|
| 193 |
+
labels = labels.cpu().detach().numpy()
|
| 194 |
+
loss = ne.evaluate("sum(-log(outputs[arange(outputs.shape[0]), labels]))") / len(labels)
|
| 195 |
+
|
| 196 |
+
# Backpropagate and update the model parameters
|
| 197 |
+
ne.evaluate("loss", out=loss)
|
| 198 |
+
grad_outputs = np.ones_like(outputs)
|
| 199 |
+
grad_outputs[np.arange(grad_outputs.shape[0]), labels] = -1
|
| 200 |
+
grad_outputs /= len(labels)
|
| 201 |
+
grad_outputs = ne.evaluate("grad_outputs * loss_grad")
|
| 202 |
+
grad_outputs = torch.from_numpy(grad_outputs).to(device)
|
| 203 |
+
outputs = torch.from_numpy(outputs).to(device)
|
| 204 |
+
loss.backward(grad_outputs)
|
| 205 |
+
optimizer.step()
|
| 206 |
+
|
| 207 |
+
running_loss += loss.item()
|
| 208 |
+
|
| 209 |
+
epoch += 1
|
| 210 |
+
print(f"Epoch {epoch}, Loss: {running_loss / (i + 1)}")
|
| 211 |
+
print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")
|
| 212 |
+
|
| 213 |
+
return model
|
| 214 |
+
|
| 215 |
+
# Train the model with a 10 GB data cap
|
| 216 |
+
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, os.device_encoding, data_cap_gb=10)
|
| 217 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
| 218 |
+
|
| 219 |
+
target_app_name = "GTA5.exe"
|
| 220 |
+
save_interval_seconds = 5 * 60
|
| 221 |
+
application_was_running = False
|
| 222 |
+
while True:
|
| 223 |
+
if is_target_app_running(target_app_name):
|
| 224 |
+
print("Target application is running. Training and updating the model...")
|
| 225 |
+
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, os.device_encoding, data_cap_gb=10)
|
| 226 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
| 227 |
+
application_was_running = True
|
| 228 |
+
elif application_was_running:
|
| 229 |
+
print("Target application has exited. Saving the model...")
|
| 230 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
| 231 |
+
print("Finished training and saved the model.")
|
| 232 |
+
break
|
| 233 |
+
else:
|
| 234 |
+
print("Target application is not running. Waiting to start training and updating the model...")
|
| 235 |
+
|
| 236 |
+
time.sleep(save_interval_seconds)
|
| 237 |
+
|
| 238 |
+
def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_cap_gb):
|
| 239 |
+
data_processed = 0
|
| 240 |
+
data_cap_bytes = data_cap_gb * (1024 ** 3)
|
| 241 |
+
epoch = 0
|
| 242 |
+
|
| 243 |
+
while data_processed < data_cap_bytes:
|
| 244 |
+
running_loss = 0.0
|
| 245 |
+
for i, data in enumerate(data_loader, 0):
|
| 246 |
+
inputs, labels = data
|
| 247 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
| 248 |
+
|
| 249 |
+
# Update the amount of data processed
|
| 250 |
+
data_processed += inputs.nelement() * inputs.element_size()
|
| 251 |
+
if data_processed >= data_cap_bytes:
|
| 252 |
+
break
|
| 253 |
+
|
| 254 |
+
optimizer.zero_grad()
|
| 255 |
+
|
| 256 |
+
# Compute the outputs and loss using numexpr
|
| 257 |
+
outputs = model(inputs.view(-1, 28 * 28))
|
| 258 |
+
outputs = outputs.cpu().detach().numpy()
|
| 259 |
+
labels = labels.cpu().detach().numpy()
|
| 260 |
+
loss = ne.evaluate("sum(-log(outputs[arange(outputs.shape[0]), labels]))") / len(labels)
|
| 261 |
+
|
| 262 |
+
# Backpropagate and update the model parameters
|
| 263 |
+
ne.evaluate("loss", out=loss)
|
| 264 |
+
grad_outputs = np.ones_like(outputs)
|
| 265 |
+
grad_outputs[np.arange(grad_outputs.shape[0]), labels] = -1
|
| 266 |
+
grad_outputs /= len(labels)
|
| 267 |
+
grad_outputs = ne.evaluate("grad_outputs * loss_grad")
|
| 268 |
+
grad_outputs = torch.from_numpy(grad_outputs).to(device)
|
| 269 |
+
outputs = torch.from_numpy(outputs).to(device)
|
| 270 |
+
loss.backward(grad_outputs)
|
| 271 |
+
optimizer.step()
|
| 272 |
+
|
| 273 |
+
running_loss += loss.item()
|
| 274 |
+
|
| 275 |
+
epoch += 1
|
| 276 |
+
print(f"Epoch {epoch}, Loss: {running_loss / (i + 1)}")
|
| 277 |
+
print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")
|
| 278 |
+
|
| 279 |
+
return model
|
| 280 |
+
|
| 281 |
+
target_app_name = "GTA5.exe"
|
| 282 |
+
save_interval_seconds = 1 * 60
|
| 283 |
+
application_was_running = False
|
| 284 |
+
|
| 285 |
+
while True:
|
| 286 |
+
if is_target_app_running(target_app_name):
|
| 287 |
+
print("Target application is running. Training and updating the model...")
|
| 288 |
+
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=10)
|
| 289 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
| 290 |
+
application_was_running = True
|
| 291 |
+
elif application_was_running:
|
| 292 |
+
print("Target application has exited. Saving the model...")
|
| 293 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
| 294 |
+
print("Finished training and saved the model.")
|
| 295 |
+
break
|
| 296 |
+
else:
|
| 297 |
+
start_time = time.time()
|
| 298 |
+
print("Target application is not running. Waiting to detect the graphics API...")
|
| 299 |
+
while (time.time() - start_time) < 5:
|
| 300 |
+
if is_target_app_running(target_app_name):
|
| 301 |
+
if graphics_api := check_graphics_api(target_app_name):
|
| 302 |
+
print(f"Detected {graphics_api} in the target application.")
|
| 303 |
+
break
|
| 304 |
+
else:
|
| 305 |
+
print("Could not detect the graphics API used in the target application.")
|
| 306 |
+
time.sleep(1)
|
| 307 |
+
|
| 308 |
+
if not is_target_app_running(target_app_name):
|
| 309 |
+
print("Target application not detected in 5 seconds. Shutting down the AI.")
|
| 310 |
+
break
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
while True:
|
| 314 |
+
if is_target_app_running(target_app_name):
|
| 315 |
+
if graphics_api := check_graphics_api(target_app_name):
|
| 316 |
+
print(f"Detected {graphics_api} in the target application.")
|
| 317 |
+
else:
|
| 318 |
+
print("Could not detect the graphics API used in the target application.")
|
| 319 |
+
else:
|
| 320 |
+
start_time = time.time()
|
| 321 |
+
print("Target application is not running. Waiting to start training and updating the model...")
|
| 322 |
+
while (time.time() - start_time) < 5:
|
| 323 |
+
if is_target_app_running(target_app_name):
|
| 324 |
+
print(f"Detected {graphics_api} in the target application.")
|
| 325 |
+
break
|
| 326 |
+
time.sleep(1)
|
| 327 |
+
|
| 328 |
+
if not is_target_app_running(target_app_name):
|
| 329 |
+
print("Target application not detected in 5 seconds. Shutting down the AI.")
|
| 330 |
+
break
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
#Generate some random data for the boxplots
|
| 334 |
+
np.random.seed(0)
|
| 335 |
+
original_data = np.random.normal(0, 1, 100)
|
| 336 |
+
trained_data = np.random.normal(0.5, 1, 100)
|
| 337 |
+
|
| 338 |
+
while True:
|
| 339 |
+
if is_target_app_running(target_app_name):
|
| 340 |
+
print("Target application is running. Training and updating the model...")
|
| 341 |
+
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=10)
|
| 342 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
| 343 |
+
|
| 344 |
+
# Create a box plot of the original and trained data
|
| 345 |
+
plt.figure()
|
| 346 |
+
plt.boxplot([original_data, trained_data], labels=["Original Data", "Trained Data"])
|
| 347 |
+
plt.title("Boxplot of Original and Trained Data")
|
| 348 |
+
plt.ylabel("Values")
|
| 349 |
+
plt.show()
|
| 350 |
+
|
| 351 |
+
# Save the box plot as an image
|
| 352 |
+
plt.savefig(r"G:\Epic Games\GTAV\GTA5_AI\Plot Box Comparison\boxplot_comparison.png")
|
| 353 |
+
|
| 354 |
+
application_was_running = True
|
| 355 |
+
elif application_was_running:
|
| 356 |
+
print("Target application has exited. Saving the model...")
|
| 357 |
+
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
| 358 |
+
print("Finished training and saved the model.")
|
| 359 |
+
break
|
| 360 |
+
else:
|
| 361 |
+
start_time = time.time()
|
| 362 |
+
print("Target application is not running. Waiting to detect the graphics API...")
|
| 363 |
+
while (time.time() - start_time) < 5:
|
| 364 |
+
if is_target_app_running(target_app_name):
|
| 365 |
+
if graphics_api := check_graphics_api(target_app_name):
|
| 366 |
+
print(f"Detected {graphics_api} in the target application.")
|
| 367 |
+
break
|
| 368 |
+
else:
|
| 369 |
+
print("Could not detect the graphics API used in the target application.")
|
| 370 |
+
time.sleep(1)
|
| 371 |
+
|
| 372 |
+
if not is_target_app_running(target_app_name):
|
| 373 |
+
print("Target application not detected in 5 seconds. Shutting down the AI.")
|
| 374 |
+
break
|